A series of Rhodamine type Anthrone-Spirolactam (ASL) derivatives Benzylimin-Anthrone-Spirolactam (ASL-1 to ASL-10) and Benzamide-Anthrone-Spirolactam (ASL-11 and ASL-12) were synthesized via a simple condensation reaction between Anthrone Spiro-lactamine (2) and various aromatic aldehyde and acyl chlorides respectively. Since rhodamine-based compounds were reported to have antiviral activity, the ASL derivatives were examined for in vitro antiviral activity against dengue and chikungunya viruses. Among all the analogues, ASL-3, ASL-6, ASL-7, ASL-8, ASL-9 and ASL-10 were the most potent against dengue virus (DENV) and exerted around one log reduction in virus titre under post-treatment conditions. At the same time ASL-3 was effective under co-treatment conditions. Two analogues ASL-6 and ASL-12 exerted anti-chikungunya virus (CHIKV) activity under post-treatment conditions. In silico docking studies revealed that the ASL derivatives interacted with the proteins of DENV and CHIKV. Together, the results suggest the anti-DENV and CHIKV activity of ASL derivatives which may be exploited further for therapeutic purposes.