Deep Learning-Based Multi-Modality Segmentation of Primary Gross Tumor Volume in CT and MRI for Nasopharyngeal Carcinoma

医学 鼻咽癌 放射治疗计划 放射肿瘤学家 模态(人机交互) 放射科 放射治疗 分割 核医学 磁共振成像 人工智能 计算机科学
作者
Yongfeng Zhang,Xiangyang Ye,Junbo Ge,Dongdong Guo,Dechun Zheng,Hui Yu,Yongsheng Chen,Guang Yao,Zhongxin Lu,Alan Yuille,L.Z. Lu,Dakai Jin,Shuai Yan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): e498-e498 被引量:2
标识
DOI:10.1016/j.ijrobp.2023.06.1739
摘要

The delineation of primary gross tumor volume (GTV) of nasopharyngeal carcinoma (NPC) is an essential step for radiotherapy planning. In clinical practice, radiation oncologists manually delineate the GTV in planning CT with the help of diagnostic MRI. This is because NPC tumors are closely adjacent to many important anatomic structures, and CT and MRI provide complementary strength to accurately determine the tumor extension boundary. Manual delineation is time-consuming with the potential registration errors between MRI and CT decreasing the delineation accuracy. In this study, we propose a fully automated GTV segmentation method based on CT and MRI by first aligning MRI to CT, and then, segmenting the GTV using a multi-modality deep learning model.We collected 104 nasopharyngeal carcinoma patients with both planning CT and diagnostic MRI scans (T1 & T2 phases). An experienced radiation oncologists manually delineated the GTV, which was further examined by another senior radiation oncologist. Then, a coarse to fine cross-modality registration from MRI to CT was conducted as follows: (1) A rigid transformation was performed on MRI to roughly align MRI to CT with similar anatomic position. (2) Then, the region of interest (RoI) on both CT and rigid-transformed MRI were cropped. (3) A leading cross-modality deformable registration algorithm, named DEEDS, was applied on the cropped MRI and CT RoIs to find an accurate local alignment. Next, using CT and registered MRI as the combined input, a multi-modality deep segmentation network based on nnUNet was trained to generate the GTV prediction. 20% patients were randomly selected as the unseen testing set to quantitatively evaluate the performance.The quantitative NPC GTV segmentation performance is summarized in Table 1. The deep segmentation model using CT alone achieved reasonable high performance with 76.6% Dice score and 1.34mm average surface distance (ASD). When both CT and registered MRI were used, the segmentation model further improved the performance by 0.9% Dice score increase and 11% relative ASD error reduction, demonstrating the complementary strength of CT and MRI in determining NPC GTV. Notably, the achieved 77.5% Dice score and 1.19mm ASD by the multimodality model is among the top performing results reported in recent automatic NPC GTV segmentation using either CT or MRI modality.We developed a fully automated multi-modal deep-learning model for NPC GTV segmentation. The developed model can segment the NPC GTV in high accuracy. With further optimization and validation, this automated model has potential to standardize the NPC GTV segmentation and significantly decrease the workload of radiation oncologists in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
凌代萱完成签到 ,获得积分10
刚刚
1秒前
1秒前
mmm完成签到,获得积分20
4秒前
powell应助喜喵喵采纳,获得10
5秒前
高手发布了新的文献求助10
5秒前
6秒前
gsq发布了新的文献求助30
7秒前
8秒前
香蕉妙菱发布了新的文献求助10
9秒前
深情安青应助wwwstt采纳,获得10
10秒前
易酰水烊酸应助苏苏采纳,获得10
11秒前
11秒前
12秒前
英姑应助小刘采纳,获得10
12秒前
李彪发布了新的文献求助30
12秒前
开心每一天完成签到 ,获得积分10
13秒前
星辰大海应助高手采纳,获得10
13秒前
温柔的姿完成签到,获得积分10
14秒前
传奇3应助gj采纳,获得10
19秒前
XYX关闭了XYX文献求助
27秒前
曲奇吐司完成签到,获得积分10
31秒前
FashionBoy应助Sijie采纳,获得10
33秒前
dong应助夏木夏采纳,获得10
34秒前
美好二娘完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
38秒前
唐慢慢发布了新的文献求助10
38秒前
ding应助猪猪hero采纳,获得10
38秒前
朴素若枫完成签到,获得积分10
39秒前
苏孖完成签到,获得积分10
41秒前
43秒前
44秒前
t团子完成签到,获得积分10
44秒前
潇湘雪月发布了新的文献求助10
45秒前
一枚小豆完成签到,获得积分10
47秒前
hahahah完成签到,获得积分10
48秒前
坦率耳机应助朴素若枫采纳,获得10
49秒前
wucl1990发布了新的文献求助10
49秒前
科研通AI5应助CSPC001采纳,获得10
49秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136