Deep Learning-Based Multi-Modality Segmentation of Primary Gross Tumor Volume in CT and MRI for Nasopharyngeal Carcinoma

医学 鼻咽癌 放射治疗计划 放射肿瘤学家 模态(人机交互) 放射科 放射治疗 分割 核医学 磁共振成像 人工智能 计算机科学
作者
Yongfeng Zhang,Xiangyang Ye,Junbo Ge,Dongdong Guo,Dechun Zheng,Hui Yu,Yongsheng Chen,Guang Yao,Zhongxin Lu,Alan Yuille,L.Z. Lu,Dakai Jin,Shuai Yan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e498-e498 被引量:2
标识
DOI:10.1016/j.ijrobp.2023.06.1739
摘要

The delineation of primary gross tumor volume (GTV) of nasopharyngeal carcinoma (NPC) is an essential step for radiotherapy planning. In clinical practice, radiation oncologists manually delineate the GTV in planning CT with the help of diagnostic MRI. This is because NPC tumors are closely adjacent to many important anatomic structures, and CT and MRI provide complementary strength to accurately determine the tumor extension boundary. Manual delineation is time-consuming with the potential registration errors between MRI and CT decreasing the delineation accuracy. In this study, we propose a fully automated GTV segmentation method based on CT and MRI by first aligning MRI to CT, and then, segmenting the GTV using a multi-modality deep learning model.We collected 104 nasopharyngeal carcinoma patients with both planning CT and diagnostic MRI scans (T1 & T2 phases). An experienced radiation oncologists manually delineated the GTV, which was further examined by another senior radiation oncologist. Then, a coarse to fine cross-modality registration from MRI to CT was conducted as follows: (1) A rigid transformation was performed on MRI to roughly align MRI to CT with similar anatomic position. (2) Then, the region of interest (RoI) on both CT and rigid-transformed MRI were cropped. (3) A leading cross-modality deformable registration algorithm, named DEEDS, was applied on the cropped MRI and CT RoIs to find an accurate local alignment. Next, using CT and registered MRI as the combined input, a multi-modality deep segmentation network based on nnUNet was trained to generate the GTV prediction. 20% patients were randomly selected as the unseen testing set to quantitatively evaluate the performance.The quantitative NPC GTV segmentation performance is summarized in Table 1. The deep segmentation model using CT alone achieved reasonable high performance with 76.6% Dice score and 1.34mm average surface distance (ASD). When both CT and registered MRI were used, the segmentation model further improved the performance by 0.9% Dice score increase and 11% relative ASD error reduction, demonstrating the complementary strength of CT and MRI in determining NPC GTV. Notably, the achieved 77.5% Dice score and 1.19mm ASD by the multimodality model is among the top performing results reported in recent automatic NPC GTV segmentation using either CT or MRI modality.We developed a fully automated multi-modal deep-learning model for NPC GTV segmentation. The developed model can segment the NPC GTV in high accuracy. With further optimization and validation, this automated model has potential to standardize the NPC GTV segmentation and significantly decrease the workload of radiation oncologists in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIUDEHUA发布了新的文献求助10
刚刚
1秒前
li完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
4秒前
似风完成签到 ,获得积分10
5秒前
jackie able完成签到,获得积分20
5秒前
斯文败类应助LIUDEHUA采纳,获得10
6秒前
悠旷完成签到 ,获得积分10
7秒前
追风完成签到,获得积分10
7秒前
8秒前
时尚飞阳完成签到,获得积分10
10秒前
雨寒完成签到 ,获得积分10
11秒前
结实以蓝完成签到,获得积分10
11秒前
YTL完成签到,获得积分20
11秒前
12秒前
夏飞飞完成签到,获得积分10
13秒前
goodbuhui完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
yjy123应助Mangues采纳,获得30
16秒前
16秒前
妮露的修狗完成签到,获得积分10
17秒前
东77发布了新的文献求助10
18秒前
LuckyMM完成签到 ,获得积分10
18秒前
魔幻哈密瓜完成签到,获得积分10
19秒前
Pan发布了新的文献求助10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
1r发布了新的文献求助10
21秒前
万能图书馆应助Rinamamiya采纳,获得50
21秒前
深情安青应助lian采纳,获得10
22秒前
2182265539发布了新的文献求助10
22秒前
24秒前
六芒星发布了新的文献求助10
24秒前
wansida完成签到,获得积分10
24秒前
妥妥酱完成签到,获得积分10
25秒前
毛毛余完成签到 ,获得积分10
27秒前
笔记本完成签到,获得积分0
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812