亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning-Based Multi-Modality Segmentation of Primary Gross Tumor Volume in CT and MRI for Nasopharyngeal Carcinoma

医学 鼻咽癌 放射治疗计划 放射肿瘤学家 模态(人机交互) 放射科 放射治疗 分割 核医学 磁共振成像 人工智能 计算机科学
作者
Yongfeng Zhang,Xiangyang Ye,Junbo Ge,Dongdong Guo,Dechun Zheng,Hui Yu,Yongsheng Chen,Guang Yao,Zhongxin Lu,Alan Yuille,L.Z. Lu,Dakai Jin,Shuai Yan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): e498-e498 被引量:2
标识
DOI:10.1016/j.ijrobp.2023.06.1739
摘要

The delineation of primary gross tumor volume (GTV) of nasopharyngeal carcinoma (NPC) is an essential step for radiotherapy planning. In clinical practice, radiation oncologists manually delineate the GTV in planning CT with the help of diagnostic MRI. This is because NPC tumors are closely adjacent to many important anatomic structures, and CT and MRI provide complementary strength to accurately determine the tumor extension boundary. Manual delineation is time-consuming with the potential registration errors between MRI and CT decreasing the delineation accuracy. In this study, we propose a fully automated GTV segmentation method based on CT and MRI by first aligning MRI to CT, and then, segmenting the GTV using a multi-modality deep learning model.We collected 104 nasopharyngeal carcinoma patients with both planning CT and diagnostic MRI scans (T1 & T2 phases). An experienced radiation oncologists manually delineated the GTV, which was further examined by another senior radiation oncologist. Then, a coarse to fine cross-modality registration from MRI to CT was conducted as follows: (1) A rigid transformation was performed on MRI to roughly align MRI to CT with similar anatomic position. (2) Then, the region of interest (RoI) on both CT and rigid-transformed MRI were cropped. (3) A leading cross-modality deformable registration algorithm, named DEEDS, was applied on the cropped MRI and CT RoIs to find an accurate local alignment. Next, using CT and registered MRI as the combined input, a multi-modality deep segmentation network based on nnUNet was trained to generate the GTV prediction. 20% patients were randomly selected as the unseen testing set to quantitatively evaluate the performance.The quantitative NPC GTV segmentation performance is summarized in Table 1. The deep segmentation model using CT alone achieved reasonable high performance with 76.6% Dice score and 1.34mm average surface distance (ASD). When both CT and registered MRI were used, the segmentation model further improved the performance by 0.9% Dice score increase and 11% relative ASD error reduction, demonstrating the complementary strength of CT and MRI in determining NPC GTV. Notably, the achieved 77.5% Dice score and 1.19mm ASD by the multimodality model is among the top performing results reported in recent automatic NPC GTV segmentation using either CT or MRI modality.We developed a fully automated multi-modal deep-learning model for NPC GTV segmentation. The developed model can segment the NPC GTV in high accuracy. With further optimization and validation, this automated model has potential to standardize the NPC GTV segmentation and significantly decrease the workload of radiation oncologists in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的自行车完成签到,获得积分20
22秒前
Akim应助科研通管家采纳,获得10
27秒前
我睡觉不会困12138完成签到 ,获得积分10
48秒前
脑洞疼应助xiongdi521采纳,获得10
56秒前
阿泽完成签到 ,获得积分10
1分钟前
疯狂的自行车关注了科研通微信公众号
1分钟前
kohu完成签到,获得积分10
1分钟前
1分钟前
kohu发布了新的文献求助10
1分钟前
1分钟前
正直的松鼠完成签到 ,获得积分10
2分钟前
核桃发布了新的文献求助10
2分钟前
Xw关闭了Xw文献求助
3分钟前
3分钟前
Xw关闭了Xw文献求助
3分钟前
3分钟前
Swear完成签到 ,获得积分10
3分钟前
勤恳冰淇淋完成签到 ,获得积分10
3分钟前
3分钟前
El发布了新的文献求助10
3分钟前
4分钟前
李健应助El采纳,获得10
4分钟前
义气雁完成签到 ,获得积分10
4分钟前
4分钟前
xiongdi521发布了新的文献求助10
4分钟前
美罗培南完成签到 ,获得积分10
4分钟前
lige完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
二十四桥完成签到 ,获得积分10
5分钟前
直觉应助背后的鞋垫采纳,获得10
5分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
Akim应助Borhan采纳,获得10
5分钟前
5分钟前
jjjjj发布了新的文献求助10
5分钟前
Liiiiiiiiii发布了新的文献求助10
5分钟前
Eva完成签到 ,获得积分10
6分钟前
上官若男应助Liiiiiiiiii采纳,获得10
6分钟前
Liufgui应助jjjjj采纳,获得10
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990075
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256369
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228