Deep Learning-Based Multi-Modality Segmentation of Primary Gross Tumor Volume in CT and MRI for Nasopharyngeal Carcinoma

医学 鼻咽癌 放射治疗计划 放射肿瘤学家 模态(人机交互) 放射科 放射治疗 分割 核医学 磁共振成像 人工智能 计算机科学
作者
Yongfeng Zhang,Xiangyang Ye,Junbo Ge,Dazhou Guo,Dali Zheng,Hui Yu,Yongsheng Chen,Guang Yao,Lu Zhang,Alan Yuille,Lizhi Liu,Dakai Jin,Shuai Yan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e498-e498 被引量:2
标识
DOI:10.1016/j.ijrobp.2023.06.1739
摘要

The delineation of primary gross tumor volume (GTV) of nasopharyngeal carcinoma (NPC) is an essential step for radiotherapy planning. In clinical practice, radiation oncologists manually delineate the GTV in planning CT with the help of diagnostic MRI. This is because NPC tumors are closely adjacent to many important anatomic structures, and CT and MRI provide complementary strength to accurately determine the tumor extension boundary. Manual delineation is time-consuming with the potential registration errors between MRI and CT decreasing the delineation accuracy. In this study, we propose a fully automated GTV segmentation method based on CT and MRI by first aligning MRI to CT, and then, segmenting the GTV using a multi-modality deep learning model.We collected 104 nasopharyngeal carcinoma patients with both planning CT and diagnostic MRI scans (T1 & T2 phases). An experienced radiation oncologists manually delineated the GTV, which was further examined by another senior radiation oncologist. Then, a coarse to fine cross-modality registration from MRI to CT was conducted as follows: (1) A rigid transformation was performed on MRI to roughly align MRI to CT with similar anatomic position. (2) Then, the region of interest (RoI) on both CT and rigid-transformed MRI were cropped. (3) A leading cross-modality deformable registration algorithm, named DEEDS, was applied on the cropped MRI and CT RoIs to find an accurate local alignment. Next, using CT and registered MRI as the combined input, a multi-modality deep segmentation network based on nnUNet was trained to generate the GTV prediction. 20% patients were randomly selected as the unseen testing set to quantitatively evaluate the performance.The quantitative NPC GTV segmentation performance is summarized in Table 1. The deep segmentation model using CT alone achieved reasonable high performance with 76.6% Dice score and 1.34mm average surface distance (ASD). When both CT and registered MRI were used, the segmentation model further improved the performance by 0.9% Dice score increase and 11% relative ASD error reduction, demonstrating the complementary strength of CT and MRI in determining NPC GTV. Notably, the achieved 77.5% Dice score and 1.19mm ASD by the multimodality model is among the top performing results reported in recent automatic NPC GTV segmentation using either CT or MRI modality.We developed a fully automated multi-modal deep-learning model for NPC GTV segmentation. The developed model can segment the NPC GTV in high accuracy. With further optimization and validation, this automated model has potential to standardize the NPC GTV segmentation and significantly decrease the workload of radiation oncologists in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助冷酷云朵采纳,获得10
1秒前
1秒前
2秒前
wl5289完成签到,获得积分10
4秒前
5秒前
wl5289发布了新的文献求助10
7秒前
10秒前
Ann发布了新的文献求助10
11秒前
科研66666完成签到 ,获得积分10
13秒前
受伤的冰海完成签到 ,获得积分10
14秒前
没有昵称完成签到,获得积分10
16秒前
future完成签到 ,获得积分10
23秒前
喂喂喂完成签到 ,获得积分10
26秒前
默默的大腚完成签到 ,获得积分10
26秒前
贾舒涵完成签到,获得积分10
29秒前
Jason完成签到 ,获得积分20
29秒前
30秒前
斯文败类应助云朵上的鱼采纳,获得10
31秒前
destiny完成签到 ,获得积分10
32秒前
33秒前
彭笑笑完成签到 ,获得积分10
34秒前
xjcy应助smm采纳,获得10
36秒前
ss_hHe发布了新的文献求助10
36秒前
38秒前
yiheng发布了新的文献求助10
39秒前
43秒前
liudi123456完成签到,获得积分10
44秒前
45秒前
45秒前
yiheng完成签到,获得积分10
46秒前
清爽尔安发布了新的文献求助10
49秒前
小王完成签到,获得积分10
51秒前
zhangxin发布了新的文献求助30
52秒前
52秒前
53秒前
云朵上的鱼完成签到,获得积分10
53秒前
博雅雅雅雅雅完成签到,获得积分10
54秒前
55秒前
一轮明月完成签到 ,获得积分10
56秒前
57秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137561
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787276
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300093
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023