已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based Multi-Modality Segmentation of Primary Gross Tumor Volume in CT and MRI for Nasopharyngeal Carcinoma

医学 鼻咽癌 放射治疗计划 放射肿瘤学家 模态(人机交互) 放射科 放射治疗 分割 核医学 磁共振成像 人工智能 计算机科学
作者
Yongfeng Zhang,Xiangyang Ye,Junbo Ge,Dongdong Guo,Dechun Zheng,Hui Yu,Yongsheng Chen,Guang Yao,Zhongxin Lu,Alan Yuille,L.Z. Lu,Dakai Jin,Shuai Yan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): e498-e498 被引量:2
标识
DOI:10.1016/j.ijrobp.2023.06.1739
摘要

The delineation of primary gross tumor volume (GTV) of nasopharyngeal carcinoma (NPC) is an essential step for radiotherapy planning. In clinical practice, radiation oncologists manually delineate the GTV in planning CT with the help of diagnostic MRI. This is because NPC tumors are closely adjacent to many important anatomic structures, and CT and MRI provide complementary strength to accurately determine the tumor extension boundary. Manual delineation is time-consuming with the potential registration errors between MRI and CT decreasing the delineation accuracy. In this study, we propose a fully automated GTV segmentation method based on CT and MRI by first aligning MRI to CT, and then, segmenting the GTV using a multi-modality deep learning model.We collected 104 nasopharyngeal carcinoma patients with both planning CT and diagnostic MRI scans (T1 & T2 phases). An experienced radiation oncologists manually delineated the GTV, which was further examined by another senior radiation oncologist. Then, a coarse to fine cross-modality registration from MRI to CT was conducted as follows: (1) A rigid transformation was performed on MRI to roughly align MRI to CT with similar anatomic position. (2) Then, the region of interest (RoI) on both CT and rigid-transformed MRI were cropped. (3) A leading cross-modality deformable registration algorithm, named DEEDS, was applied on the cropped MRI and CT RoIs to find an accurate local alignment. Next, using CT and registered MRI as the combined input, a multi-modality deep segmentation network based on nnUNet was trained to generate the GTV prediction. 20% patients were randomly selected as the unseen testing set to quantitatively evaluate the performance.The quantitative NPC GTV segmentation performance is summarized in Table 1. The deep segmentation model using CT alone achieved reasonable high performance with 76.6% Dice score and 1.34mm average surface distance (ASD). When both CT and registered MRI were used, the segmentation model further improved the performance by 0.9% Dice score increase and 11% relative ASD error reduction, demonstrating the complementary strength of CT and MRI in determining NPC GTV. Notably, the achieved 77.5% Dice score and 1.19mm ASD by the multimodality model is among the top performing results reported in recent automatic NPC GTV segmentation using either CT or MRI modality.We developed a fully automated multi-modal deep-learning model for NPC GTV segmentation. The developed model can segment the NPC GTV in high accuracy. With further optimization and validation, this automated model has potential to standardize the NPC GTV segmentation and significantly decrease the workload of radiation oncologists in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo应助Lion采纳,获得10
1秒前
1秒前
2秒前
干净涵梅完成签到,获得积分10
6秒前
Calyn完成签到 ,获得积分0
12秒前
高兴的忆曼完成签到,获得积分10
16秒前
淡淡的向雁完成签到,获得积分10
19秒前
31秒前
xiaolang2004完成签到,获得积分10
32秒前
胡萝卜完成签到,获得积分10
37秒前
专一的咖啡完成签到,获得积分10
48秒前
Akim应助hume采纳,获得10
53秒前
yuan完成签到 ,获得积分10
1分钟前
akakns完成签到 ,获得积分10
1分钟前
罐罐完成签到,获得积分10
1分钟前
六六完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
直觉应助科研达人采纳,获得10
1分钟前
Cain完成签到,获得积分10
1分钟前
叮当拉卡给叮当拉卡的求助进行了留言
1分钟前
和谐的冬莲完成签到 ,获得积分10
1分钟前
Li发布了新的文献求助10
1分钟前
水若琳发布了新的文献求助10
1分钟前
隐形曼青应助背后的鞋垫采纳,获得10
1分钟前
lab完成签到 ,获得积分0
1分钟前
wch666完成签到,获得积分10
1分钟前
GingerF完成签到,获得积分0
1分钟前
NZC完成签到,获得积分10
1分钟前
luroa完成签到 ,获得积分10
1分钟前
英俊的铭应助风吹屁屁凉采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科目三应助wch666采纳,获得10
1分钟前
轻语完成签到 ,获得积分10
1分钟前
张建威完成签到,获得积分10
1分钟前
bkagyin应助小刘采纳,获得10
1分钟前
1分钟前
调皮的灰狼完成签到,获得积分10
1分钟前
2分钟前
litieniu发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990008
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256121
捐赠科研通 3270913
什么是DOI,文献DOI怎么找? 1805105
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216