DBTrans: A Dual-Branch Vision Transformer for Multi-Modal Brain Tumor Segmentation

计算机科学 编码器 分割 变压器 人工智能 量子力学 操作系统 物理 电压
作者
Xinyi Zeng,Pinxian Zeng,Cheng Tang,Peng Wang,Binyu Yan,Yan Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 502-512 被引量:8
标识
DOI:10.1007/978-3-031-43901-8_48
摘要

3D Spatially Aligned Multi-modal MRI Brain Tumor Segmentation (SAMM-BTS) is a crucial task for clinical diagnosis. While Transformer-based models have shown outstanding success in this field due to their ability to model global features using the self-attention mechanism, they still face two challenges. First, due to the high computational complexity and deficiencies in modeling local features, the traditional self-attention mechanism is ill-suited for SAMM-BTS tasks that require modeling both global and local volumetric features within an acceptable computation overhead. Second, existing models only stack spatially aligned multi-modal data on the channel dimension, without any processing for such multi-channel data in the model's internal design. To address these challenges, we propose a Transformer-based model for the SAMM-BTS task, namely DBTrans, with dual-branch architectures for both the encoder and decoder. Specifically, the encoder implements two parallel feature extraction branches, including a local branch based on Shifted Window Self-attention and a global branch based on Shuffle Window Cross-attention to capture both local and global information with linear computational complexity. Besides, we add an extra global branch based on Shifted Window Cross-attention to the decoder, introducing the key and value matrices from the corresponding encoder block, allowing the segmented target to access a more complete context during up-sampling. Furthermore, the above dual-branch designs in the encoder and decoder are both integrated with improved channel attention mechanisms to fully explore the contribution of features at different channels. Experimental results demonstrate the superiority of our DBTrans model in both qualitative and quantitative measures. Codes will be released at https://github.com/Aru321/DBTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pp应助憨憨的小于采纳,获得20
1秒前
1秒前
弹幕完成签到,获得积分10
1秒前
充电宝应助沉静逍遥采纳,获得10
2秒前
2秒前
3秒前
3秒前
tsq发布了新的文献求助10
4秒前
11完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
酷波er应助动听元彤采纳,获得10
4秒前
文文发布了新的文献求助10
5秒前
MY完成签到,获得积分10
6秒前
完美世界应助殷勤的岱周采纳,获得30
7秒前
弹幕发布了新的文献求助10
9秒前
应文俊发布了新的文献求助10
9秒前
10秒前
10秒前
Hello应助tsq采纳,获得10
11秒前
Marciu33发布了新的文献求助10
12秒前
12秒前
橙子味汽水完成签到,获得积分20
13秒前
萧东辰完成签到,获得积分10
13秒前
柚子完成签到,获得积分10
14秒前
应文俊完成签到,获得积分10
15秒前
15秒前
17秒前
研友_8DoPDZ完成签到,获得积分0
17秒前
KSDalton完成签到,获得积分10
19秒前
19秒前
文文完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
michen发布了新的文献求助10
22秒前
22秒前
23秒前
风清扬发布了新的文献求助10
23秒前
李爱国应助弹幕采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675445
求助须知:如何正确求助?哪些是违规求助? 4946851
关于积分的说明 15153495
捐赠科研通 4834824
什么是DOI,文献DOI怎么找? 2589661
邀请新用户注册赠送积分活动 1543377
关于科研通互助平台的介绍 1501192