DBTrans: A Dual-Branch Vision Transformer for Multi-Modal Brain Tumor Segmentation

计算机科学 编码器 分割 变压器 人工智能 电压 物理 量子力学 操作系统
作者
Xinyi Zeng,Pinxian Zeng,Cheng Tang,Peng Wang,Binyu Yan,Yan Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 502-512 被引量:8
标识
DOI:10.1007/978-3-031-43901-8_48
摘要

3D Spatially Aligned Multi-modal MRI Brain Tumor Segmentation (SAMM-BTS) is a crucial task for clinical diagnosis. While Transformer-based models have shown outstanding success in this field due to their ability to model global features using the self-attention mechanism, they still face two challenges. First, due to the high computational complexity and deficiencies in modeling local features, the traditional self-attention mechanism is ill-suited for SAMM-BTS tasks that require modeling both global and local volumetric features within an acceptable computation overhead. Second, existing models only stack spatially aligned multi-modal data on the channel dimension, without any processing for such multi-channel data in the model's internal design. To address these challenges, we propose a Transformer-based model for the SAMM-BTS task, namely DBTrans, with dual-branch architectures for both the encoder and decoder. Specifically, the encoder implements two parallel feature extraction branches, including a local branch based on Shifted Window Self-attention and a global branch based on Shuffle Window Cross-attention to capture both local and global information with linear computational complexity. Besides, we add an extra global branch based on Shifted Window Cross-attention to the decoder, introducing the key and value matrices from the corresponding encoder block, allowing the segmented target to access a more complete context during up-sampling. Furthermore, the above dual-branch designs in the encoder and decoder are both integrated with improved channel attention mechanisms to fully explore the contribution of features at different channels. Experimental results demonstrate the superiority of our DBTrans model in both qualitative and quantitative measures. Codes will be released at https://github.com/Aru321/DBTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
完美世界应助wuxunxun2015采纳,获得10
1秒前
lokiyyy完成签到 ,获得积分10
2秒前
科研通AI6应助li采纳,获得10
3秒前
手抖的粉恐龙完成签到,获得积分10
3秒前
3秒前
4秒前
高挑的凤灵完成签到 ,获得积分10
5秒前
李健应助kkkkkkkkkkk采纳,获得10
6秒前
misong发布了新的文献求助10
6秒前
7秒前
7秒前
小葫芦完成签到 ,获得积分10
9秒前
chcui发布了新的文献求助10
11秒前
和谐以冬完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
17秒前
17秒前
Akim应助欢呼的信封采纳,获得10
17秒前
曲聋五完成签到 ,获得积分0
18秒前
橙子完成签到,获得积分10
18秒前
19秒前
19秒前
领导范儿应助蓝草采纳,获得10
19秒前
zhangyuting完成签到 ,获得积分10
20秒前
21秒前
暴富小羊发布了新的文献求助10
21秒前
852应助Liu采纳,获得10
22秒前
22秒前
白白凝发布了新的文献求助30
23秒前
00发布了新的文献求助10
23秒前
贾医生发布了新的文献求助10
24秒前
wuxunxun2015发布了新的文献求助10
24秒前
24秒前
draven007发布了新的文献求助10
27秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613426
求助须知:如何正确求助?哪些是违规求助? 4698635
关于积分的说明 14898394
捐赠科研通 4736224
什么是DOI,文献DOI怎么找? 2547047
邀请新用户注册赠送积分活动 1511004
关于科研通互助平台的介绍 1473546