DBTrans: A Dual-Branch Vision Transformer for Multi-Modal Brain Tumor Segmentation

计算机科学 编码器 分割 变压器 人工智能 电压 物理 量子力学 操作系统
作者
Xinyi Zeng,Pinxian Zeng,Cheng Tang,Peng Wang,Binyu Yan,Yan Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 502-512 被引量:6
标识
DOI:10.1007/978-3-031-43901-8_48
摘要

3D Spatially Aligned Multi-modal MRI Brain Tumor Segmentation (SAMM-BTS) is a crucial task for clinical diagnosis. While Transformer-based models have shown outstanding success in this field due to their ability to model global features using the self-attention mechanism, they still face two challenges. First, due to the high computational complexity and deficiencies in modeling local features, the traditional self-attention mechanism is ill-suited for SAMM-BTS tasks that require modeling both global and local volumetric features within an acceptable computation overhead. Second, existing models only stack spatially aligned multi-modal data on the channel dimension, without any processing for such multi-channel data in the model's internal design. To address these challenges, we propose a Transformer-based model for the SAMM-BTS task, namely DBTrans, with dual-branch architectures for both the encoder and decoder. Specifically, the encoder implements two parallel feature extraction branches, including a local branch based on Shifted Window Self-attention and a global branch based on Shuffle Window Cross-attention to capture both local and global information with linear computational complexity. Besides, we add an extra global branch based on Shifted Window Cross-attention to the decoder, introducing the key and value matrices from the corresponding encoder block, allowing the segmented target to access a more complete context during up-sampling. Furthermore, the above dual-branch designs in the encoder and decoder are both integrated with improved channel attention mechanisms to fully explore the contribution of features at different channels. Experimental results demonstrate the superiority of our DBTrans model in both qualitative and quantitative measures. Codes will be released at https://github.com/Aru321/DBTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助喵叽采纳,获得10
1秒前
xwl9955完成签到 ,获得积分10
2秒前
王哒哒完成签到,获得积分10
3秒前
MFNM完成签到,获得积分10
3秒前
樊书雪完成签到,获得积分10
4秒前
qq完成签到,获得积分20
4秒前
幽默发卡完成签到,获得积分10
5秒前
嗯哼啊嘿嘿哟喂完成签到,获得积分10
5秒前
含糊的画板完成签到,获得积分10
9秒前
9秒前
三个地方户籍卡完成签到,获得积分10
11秒前
SamuelLiu完成签到,获得积分10
14秒前
小秋发布了新的文献求助10
15秒前
王磊完成签到,获得积分10
19秒前
123完成签到,获得积分10
20秒前
灵巧的导师完成签到,获得积分10
21秒前
Bressanone完成签到,获得积分10
22秒前
jimmy完成签到 ,获得积分10
23秒前
Yuan完成签到 ,获得积分10
24秒前
BUHUIWAN完成签到,获得积分20
24秒前
快乐的奕涵完成签到,获得积分10
25秒前
26秒前
无相完成签到 ,获得积分10
26秒前
痕丶歆完成签到 ,获得积分10
28秒前
自由的姿完成签到,获得积分10
28秒前
温柔梦易完成签到,获得积分10
28秒前
沙克几十块完成签到,获得积分10
28秒前
29秒前
ppc524完成签到,获得积分10
30秒前
潇湘夜雨完成签到,获得积分10
30秒前
小李叭叭完成签到,获得积分10
31秒前
wsr完成签到,获得积分10
31秒前
复杂的板凳完成签到,获得积分10
32秒前
失眠夏山完成签到,获得积分10
33秒前
Mingtiaoxiyue完成签到,获得积分10
34秒前
子不语发布了新的文献求助10
34秒前
超级小熊猫完成签到 ,获得积分10
35秒前
学渣一枚完成签到 ,获得积分10
35秒前
莴苣完成签到,获得积分10
35秒前
像猫的狗完成签到 ,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965813
求助须知:如何正确求助?哪些是违规求助? 3511146
关于积分的说明 11156382
捐赠科研通 3245736
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268