Principle of CoS2/ZnIn2S4 heterostructure effect and its mechanism of action in a visible light-catalyzed antibacterial process

异质结 光催化 材料科学 催化作用 激进的 纳米技术 化学工程 活性氧 可见光谱 半导体 光化学 化学 光电子学 有机化学 生物化学 工程类
作者
Meiru Lv,Kangfu Wang,Xingkun Liang,Yuanyuan Chen,Xiaoning Tang,Rongliang Liu,Wei Chen
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:653: 879-893 被引量:14
标识
DOI:10.1016/j.jcis.2023.09.118
摘要

The development of visible-light-driven catalytic antimicrobial technology is a significant challenge. In this study, heterojunctions were constructed for the appropriate modification of semiconductor-based photocatalysts. A simple hydrothermal method was used for material reconstruction, and smaller CoS2 nanoparticles were deposited and in situ grown on two-dimensional nanoflower-like ZnIn2S4 carriers to form CoS2/ZnIn2S4 (CS/ZIS) Schottky heterojunctions. Systematic study via characterization techniques and density functional theory calculations indicated that the excellent photocatalytic activity of CS/ZIS stemmed from the solid interfacial coupling between the two solid-phase materials. These materials acted as co-catalysts to increase the number of active reaction sites, enhance charge transfer, drive unidirectional electron movement, and improve charge separation efficiency, which effectively facilitated the production of reactive oxygen species (ROS). The optimized CS/ZIS heterojunction exhibited excellent performance for the efficient photocatalytic degradation of organic matter and inactivation of Escherichia coli (E. coli) compared with the ZnIn2S4 photocatalyst. Moreover, the antibacterial mechanism of the heterojunction photocatalyst and the extent of damage to the cell membrane and internal cytoplasm were explored by performing various assays. It was demonstrated that superoxide radicals are the predominant active species and multiple ROS act together to cause oxidative stress damage and cell inactivation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MQueen完成签到,获得积分10
刚刚
火羊宝发布了新的文献求助10
刚刚
cycl完成签到,获得积分10
1秒前
纹银完成签到,获得积分10
1秒前
木槐草完成签到 ,获得积分10
1秒前
WKY完成签到,获得积分10
2秒前
111完成签到 ,获得积分10
2秒前
英俊的铭应助不吃芒果采纳,获得10
2秒前
xxwxx完成签到,获得积分10
3秒前
小丸子呀发布了新的文献求助10
3秒前
3秒前
5秒前
离希夷完成签到,获得积分10
6秒前
岩追研完成签到,获得积分10
7秒前
lucid完成签到,获得积分10
7秒前
小蘑菇应助simon采纳,获得10
8秒前
8秒前
CL837809486完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
夕荀发布了新的文献求助10
9秒前
9秒前
9秒前
研友_VZG7GZ应助独特的追命采纳,获得30
9秒前
10秒前
布布完成签到 ,获得积分10
10秒前
善良书蝶完成签到 ,获得积分10
10秒前
10秒前
852应助jyh采纳,获得10
11秒前
11秒前
星辰大海应助金木采纳,获得10
11秒前
11秒前
12秒前
无限若云发布了新的文献求助10
12秒前
chenhouhan发布了新的文献求助10
12秒前
李华完成签到 ,获得积分10
13秒前
11发布了新的文献求助10
13秒前
一手灵魂完成签到,获得积分10
13秒前
马里兰州蛙泳胡萝卜完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271