析氧
自旋态
过电位
离子键合
化学
过渡金属
自旋跃迁
催化作用
单重态
旋转交叉
化学物理
结晶学
材料科学
无机化学
离子
原子物理学
物理化学
电化学
物理
激发态
电极
生物化学
有机化学
作者
Jing Zhang,Yufeng Zhao,Wanting Zhao,Jing Wang,Yongfeng Hu,Chengyu Huang,Xingli Zou,Yang Liu,Dengsong Zhang,Xionggang Lu,Hong Jin Fan,Yanglong Hou
标识
DOI:10.1002/anie.202314303
摘要
Transition metal single atom electrocatalysts (SACs) with metal-nitrogen-carbon (M-N-C) configuration show great potential in oxygen evolution reaction (OER), whereby the spin-dependent electrons must be allowed to transfer along reactants (OH- /H2 O, singlet spin state) and products (O2 , triplet spin state). Therefore, it is imperative to modulate the spin configuration in M-N-C to enhance the spin-sensitive OER energetics, which however remains a significant challenge. Herein, we report a local field distortion induced intermediate to low spin transition by introducing a main-group element (Mg) into the Fe-N-C architecture, and decode the underlying origin of the enhanced OER activity. We unveil that, the large ionic radii mismatch between Mg2+ and Fe2+ can cause a FeN4 in-plane square local field deformation, which triggers a favorable spin transition of Fe2+ from intermediate (dxy2 dxz2 dyz1 dz21 , 2.96 μB ) to low spin (dxy2 dxz2 dyz2 , 0.95 μB ), and consequently regulate the thermodyna-mics of the elementary step with desired Gibbs free energies. The as-obtained Mg/Fe dual-site catalyst demonstrates a superior OER activity with an overpotential of 224 mV at 10 mA cm-2 and an electrolysis voltage of only 1.542 V at 10 mA cm-2 in the overall water splitting, which outperforms those of the state-of-the-art transition metal SACs.
科研通智能强力驱动
Strongly Powered by AbleSci AI