Fengyun 4A Land Aerosol Retrieval: Algorithm Development, Validation, and Comparison With Other Datasets

航空网 气溶胶 地球静止轨道 环境科学 遥感 卫星 像素 气象学 查阅表格 大气(单位) 算法 计算机科学 地质学 物理 人工智能 程序设计语言 天文
作者
Xin Su,Lunche Wang,Mengdan Cao,Leiku Yang,Ming Zhang,Wenmin Qin,Qian Cao,Yikun Yang,Lei Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:11
标识
DOI:10.1109/tgrs.2023.3330544
摘要

The Advanced Geostationary Radiation Imager (AGRI) onboard the Fengyun 4A (FY-4A) satellite has high spatiotemporal resolution and provides useful spectral information that can be used to monitor aerosols and air pollution. The objective of this study is to propose the Land General Aerosol (LaGA) algorithm for retrieving aerosol information using AGRI data in the Asia region. First, the sensitivity analysis indicated that the AGRI blue band is more suitable for aerosol retrieval, and its red band is sensitive under high aerosol loading. Then, a real-time surface reflectance (SR) database was established using the atmosphere-corrected technique based on the background AOD library and regional aerosol model parameters. By comparing the AGRI observed reflectance with that calculated using a lookup table, the AGRI aerosol optical depth (AOD) with a 1-h resolution was obtained. The validation results indicated that the AGRI AOD, both at all moments (data volume: 12,102) and the daily mean (data volume: 1,766), exhibit a good agreement with AERONET AOD (R > 0.830). Its performance was comparable to that of the MOdIs dark target (DT) AOD (expected error (EE), ± (0.05 + 20%τ AERONET ): AGRI = 0.673 vs. DT = 0.666) and Himawari-8 (H8) AOD (EE: AGRI = 0.698 vs. H8 = 0.658). The pixel-by-pixel comparison demonstrated that the R between the AGRI and MODIS AODs was >0.6, and the mean bias between them was within ±0.05 in most of the study area. These results suggest the robustness of the proposed algorithm, and it has great potential for application in the follow-up Fengyun 4 series satellites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mmczj完成签到,获得积分20
1秒前
2秒前
乐乐应助海晨采纳,获得10
2秒前
彭于晏应助夭灼采纳,获得10
2秒前
pandaccc完成签到,获得积分10
3秒前
达利园发布了新的文献求助10
3秒前
顾矜应助LeoMH采纳,获得10
4秒前
橘寄发布了新的文献求助10
4秒前
小蘑菇应助lele采纳,获得10
5秒前
小二郎应助黎明采纳,获得10
6秒前
科研通AI5应助暖粥采纳,获得10
6秒前
7秒前
俏皮的醉卉完成签到,获得积分10
8秒前
情怀应助lucas采纳,获得10
8秒前
爆米花应助达利园采纳,获得10
10秒前
10秒前
寡妇哥完成签到 ,获得积分10
11秒前
mmczj发布了新的文献求助30
12秒前
13秒前
蛋黄酥完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
锂氧完成签到 ,获得积分10
16秒前
18秒前
元友容完成签到,获得积分10
18秒前
chai完成签到,获得积分10
18秒前
19秒前
李健应助pandaccc采纳,获得10
20秒前
20秒前
21秒前
21秒前
23秒前
24秒前
怕孤单的听寒完成签到,获得积分10
24秒前
25秒前
板栗子发布了新的文献求助10
26秒前
黎明发布了新的文献求助10
26秒前
熊大哥发布了新的文献求助10
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475560
求助须知:如何正确求助?哪些是违规求助? 3067449
关于积分的说明 9104069
捐赠科研通 2758955
什么是DOI,文献DOI怎么找? 1513826
邀请新用户注册赠送积分活动 699823
科研通“疑难数据库(出版商)”最低求助积分说明 699182