Bill-EVR: An Embodied Virtual Reality Framework for Reward-and-Error-Based Motor Rehab-Learning

虚拟现实 计算机科学 触觉技术 人机交互 具身认知 运动学习 神经康复 虚拟机 任务(项目管理) 人工智能 康复 心理学 工程类 神经科学 系统工程 操作系统
作者
Federico Nardi,Shlomi Haar,A. Aldo Faisal
标识
DOI:10.1109/icorr58425.2023.10304742
摘要

VR rehabilitation is an established field by now, however, it often refers to computer screen-based interactive rehabilitation activities. In recent years, there was an increased use of VR-headsets, which can provide an immersive virtual environment for real-world tasks, but they are lacking any physical interaction with the task objects and any proprioceptive feedback. Here, we focus on Embodied Virtual Reality (EVR), an emerging field where not only the visual input via VR-headset but also the haptic feedback is physically correct. This happens because subjects interact with physical objects that are veridically aligned in Virtual Reality. This technology lets us manipulate motor performance and motor learning through visual feedback perturbations. Bill-EVR is a framework that allows interventions in the performance of real-world tasks, such as playing pool billiard, engaging end-users in motivating life-like situations to trigger motor (re)learning - subjects see in VR and handle the real-world cue stick, the pool table and shoot physical balls. Specifically, we developed our platform to isolate and evaluate different mechanisms of motor learning to investigate its two main components, error-based and reward-based motor adaptation. This understanding can provide insights for improvements in neurorehabilitation: indeed, reward-based mechanisms are putatively impaired by degradation of the dopaminergic system, such as in Parkinson's disease, while error-based mechanisms are essential for recovering from stroke-induced movement errors. Due to its fully customisable features, our EVR framework can be used to facilitate the improvement of several conditions, providing a valid extension of VR-based implementations and constituting a motor learning tool that can be completely tailored to the individual needs of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希遇安发布了新的文献求助10
刚刚
77qoq完成签到 ,获得积分20
1秒前
KUN发布了新的文献求助10
1秒前
wanx-完成签到,获得积分20
1秒前
桐桐应助Mtoc采纳,获得10
2秒前
无花果应助和谐的饼干采纳,获得50
2秒前
英俊的铭应助deletelzr采纳,获得10
2秒前
2秒前
完美世界应助racill采纳,获得10
2秒前
3秒前
abu完成签到,获得积分10
3秒前
3秒前
无限符号完成签到,获得积分10
3秒前
科研通AI6应助zhenqiqin采纳,获得10
4秒前
好奇宝宝发布了新的文献求助10
4秒前
wanx-发布了新的文献求助80
5秒前
汉堡包应助渊_采纳,获得10
6秒前
6秒前
jianlong0206完成签到 ,获得积分10
6秒前
默默犀牛完成签到 ,获得积分10
6秒前
清爽安青发布了新的文献求助10
6秒前
6秒前
7秒前
南风不竞发布了新的文献求助10
7秒前
JamesPei应助可可豆战士采纳,获得10
8秒前
浮游应助芝士采纳,获得10
8秒前
jiunuan应助芝士采纳,获得10
8秒前
顾矜应助芝士采纳,获得10
8秒前
香蕉觅云应助wzg666采纳,获得10
8秒前
10秒前
脑洞疼应助77qoq采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
wwwwc发布了新的文献求助10
10秒前
xuqiansd发布了新的文献求助10
11秒前
科研通AI6应助棉花糖采纳,获得10
11秒前
12秒前
奇异果发布了新的文献求助10
13秒前
无限符号发布了新的文献求助10
13秒前
Mtoc发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937