Multi-class classification of thyroid nodules from automatic segmented ultrasound images: Hybrid ResNet based UNet convolutional neural network approach

计算机科学 卷积神经网络 人工智能 残差神经网络 班级(哲学) 模式识别(心理学)
作者
Neslihan Gökmen Inan,Ozan Kocadağlı,Düzgün Yıldırım,İsmail Meşe,Özge Kovan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:243: 107921-107921 被引量:11
标识
DOI:10.1016/j.cmpb.2023.107921
摘要

Early detection and diagnosis of thyroid nodule types are important because they can be treated more effectively in their early stages. The types of thyroid nodules are generally stated as atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS), benign follicular, and papillary follicular. The risk of malignancy for AUS/FLUS is typically stated to be between 5 and 15 %, while some studies indicate a risk as high as 25 %. Without complete histology, it is difficult to classify nodules and these diagnostic operations are pricey and risky. To minimize laborious workload and misdiagnosis, recently various AI-based decision support systems have been developed. In this study, a novel AI-based decision support system has been developed for the automated segmentation and classification of the types of thyroid nodules. This system is based on a hybrid deep-learning procedure that makes both an automatic thyroid nodule segmentation and classification tasks, respectively. In this framework, the segmentation is executed with some U-Net architectures such as ResUNet and ResUNet++ integrating with the feature extraction and upsampling with dropout operations to prevent overfitting. The nodule classification task is achieved by various deep nets architecture such as VGG-16, DenseNet121, ResNet-50, and Inception ResNet-v2 considering some accurate classification criteria such as Intersection over Union (IOU), Dice coefficient, accuracy, precision, and recall. In analysis, a total of 880 patients with ages ranging from 10 to 90 years were included by taking the ultrasound images and demographics. The experimental evaluations showed that ResUNet++ demonstrated excellent segmentation outcomes, attaining remarkable evaluation scores including a dice coefficient of 92.4 % and a mean IOU of 89.7 %. ResNet-50 and Inception ResNet-v2 trained over the images segmented with UNets have shown better performance in terms of achieving high evaluation scores for the classification accuracy such as 96.6 % and 95.0 %, respectively. In addition, ResNet-50 and Inception ResNet-v2 classified AUS/FLUS from the images segmented with UNets with AUC=97.0 % and 96.0 %, respectively. The proposed AI-based decision support system improves the automatic segmentation performance of AUS/FLUS and it has shown better performance than available approaches in the literature with respect to ACC, Jaccard and DICE losses. This system has great potential for clinical use by both radiologists and surgeons as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jdh发布了新的文献求助10
2秒前
3秒前
躺平的搬砖人完成签到,获得积分10
3秒前
our发布了新的文献求助10
3秒前
3秒前
深情安青应助柒_l采纳,获得10
4秒前
5秒前
科研dog发布了新的文献求助10
7秒前
夜盏丿完成签到,获得积分10
7秒前
Orange应助花花采纳,获得10
7秒前
8秒前
淡淡乐巧完成签到 ,获得积分10
8秒前
小二郎应助kyt采纳,获得10
8秒前
Hazellee完成签到 ,获得积分10
9秒前
青阳完成签到,获得积分10
10秒前
无私追命发布了新的文献求助10
10秒前
10秒前
大淼发布了新的文献求助30
11秒前
汐尘完成签到,获得积分10
11秒前
12秒前
浅笑发布了新的文献求助10
12秒前
12秒前
zhuhan发布了新的文献求助10
13秒前
傲娇诗翠完成签到,获得积分20
13秒前
14秒前
美味蟹皇堡关注了科研通微信公众号
14秒前
Pinocchio完成签到,获得积分10
14秒前
15秒前
15秒前
刘wt完成签到,获得积分20
17秒前
ly发布了新的文献求助10
18秒前
柒_l发布了新的文献求助10
18秒前
Titi发布了新的文献求助10
18秒前
18秒前
MJ完成签到,获得积分10
19秒前
SciGPT应助Chao采纳,获得10
19秒前
20秒前
快乐又亦发布了新的文献求助10
20秒前
20秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408760
求助须知:如何正确求助?哪些是违规求助? 3012783
关于积分的说明 8855749
捐赠科研通 2700062
什么是DOI,文献DOI怎么找? 1480218
科研通“疑难数据库(出版商)”最低求助积分说明 684244
邀请新用户注册赠送积分活动 678567