Identifying influential nodes in complex networks based on network embedding and local structure entropy

中心性 计算机科学 熵(时间箭头) 嵌入 复杂网络 数据挖掘 理论计算机科学 算法 数学 人工智能 物理 量子力学 组合数学 万维网
作者
Pengli Lu,Junxia Yang,Teng Zhang
出处
期刊:Journal of Statistical Mechanics: Theory and Experiment [IOP Publishing]
卷期号:2023 (8): 083402-083402 被引量:5
标识
DOI:10.1088/1742-5468/acdceb
摘要

Abstract The identification of influential nodes in complex networks remains a crucial research direction, as it paves the way for analyzing and controlling information diffusion. The currently presented network embedding algorithms are capable of representing high-dimensional and sparse networks with low-dimensional and dense vector spaces, which not only keeps the network structure but also has high accuracy. In this work, a novel centrality approach based on network embedding and local structure entropy, called the ELSEC , is proposed for capturing richer information to evaluate the importance of nodes from the view of local and global perspectives. In short, firstly, the local structure entropy is used to measure the self importance of nodes. Secondly, the network is mapped to a vector space to calculate the Manhattan distance between nodes by using the Node2vec network embedding algorithm, and the global importance of nodes is defined by combining the correlation coefficients. To reveal the effectiveness of the ELSEC, we select three types of algorithms for identifying key nodes as contrast approaches, including methods based on node centrality, optimal decycling based algorithms and graph partition based methods, and conduct experiments on ten real networks for correlation, ranking monotonicity, accuracy of high ranking nodes and the size of the giant connected component. Experimental results show that the ELSEC algorithm has excellent ability to identify influential nodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧欧发布了新的文献求助10
刚刚
1秒前
余梦晗完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
舒心新儿应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
3秒前
yuanyuan发布了新的文献求助10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
just do it完成签到,获得积分10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
Desperate完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516957
求助须知:如何正确求助?哪些是违规求助? 4609934
关于积分的说明 14519101
捐赠科研通 4546890
什么是DOI,文献DOI怎么找? 2491407
邀请新用户注册赠送积分活动 1473077
关于科研通互助平台的介绍 1444956