Identifying influential nodes in complex networks based on network embedding and local structure entropy

中心性 计算机科学 熵(时间箭头) 嵌入 复杂网络 数据挖掘 理论计算机科学 算法 数学 人工智能 量子力学 组合数学 物理 万维网
作者
Pengli Lu,Junxia Yang,Teng Zhang
出处
期刊:Journal of Statistical Mechanics: Theory and Experiment [Institute of Physics]
卷期号:2023 (8): 083402-083402 被引量:5
标识
DOI:10.1088/1742-5468/acdceb
摘要

Abstract The identification of influential nodes in complex networks remains a crucial research direction, as it paves the way for analyzing and controlling information diffusion. The currently presented network embedding algorithms are capable of representing high-dimensional and sparse networks with low-dimensional and dense vector spaces, which not only keeps the network structure but also has high accuracy. In this work, a novel centrality approach based on network embedding and local structure entropy, called the ELSEC , is proposed for capturing richer information to evaluate the importance of nodes from the view of local and global perspectives. In short, firstly, the local structure entropy is used to measure the self importance of nodes. Secondly, the network is mapped to a vector space to calculate the Manhattan distance between nodes by using the Node2vec network embedding algorithm, and the global importance of nodes is defined by combining the correlation coefficients. To reveal the effectiveness of the ELSEC, we select three types of algorithms for identifying key nodes as contrast approaches, including methods based on node centrality, optimal decycling based algorithms and graph partition based methods, and conduct experiments on ten real networks for correlation, ranking monotonicity, accuracy of high ranking nodes and the size of the giant connected component. Experimental results show that the ELSEC algorithm has excellent ability to identify influential nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的涵瑶应助ller采纳,获得10
1秒前
zhangzhen完成签到,获得积分10
1秒前
Profeto应助西门妙晴采纳,获得10
2秒前
2秒前
我有一头小毛驴完成签到,获得积分10
3秒前
3秒前
duoduo完成签到,获得积分10
5秒前
5秒前
无语的麦片完成签到,获得积分10
6秒前
rrgogo发布了新的文献求助10
6秒前
吉祥高趙发布了新的文献求助10
7秒前
十三完成签到 ,获得积分10
9秒前
空白完成签到,获得积分10
10秒前
zzzzzzzz应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
zzzzzzzz应助科研通管家采纳,获得10
10秒前
饱满的鑫完成签到,获得积分10
10秒前
CAOHOU应助科研通管家采纳,获得10
10秒前
zzzzzzzz应助科研通管家采纳,获得10
11秒前
生动路人应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
CAOHOU应助科研通管家采纳,获得10
11秒前
Bryan应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
zzzzzzzz应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
14秒前
14秒前
18秒前
20秒前
充电宝应助开朗的睫毛膏采纳,获得10
20秒前
XLee完成签到,获得积分10
22秒前
科研安徒生完成签到,获得积分10
22秒前
24秒前
24秒前
乐乐应助慈ci采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010600
求助须知:如何正确求助?哪些是违规求助? 3550359
关于积分的说明 11305499
捐赠科研通 3284744
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499