Research on the Application of Big Data Intelligence Technology in the Optimization of Accounts Receivable Management of E-commerce Enterprises Under the Financial Sharing Mode

应收账款 计算机科学 聚类分析 过程(计算) 财务 业务 人工智能 操作系统
作者
Xiaofeng Yang
出处
期刊:International Journal of Computational Intelligence Systems [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1007/s44196-023-00293-8
摘要

Abstract Accounts receivable management has always been an important part of the financial management of the financial sharing center. However, due to manual operation, problems like long working hours, uncontrollable errors and low efficiency of invoicing still exist. To solve this problem, we study K-means clustering method to grade customer credit, and use BP model to improve the clustering algorithm. Then, we study BP model to establish enterprise risk prediction model. Finally, we use RPA to make the billing process and reconciliation as well as write-off process optimized in accounts receivable. Through the above operations, an optimized model of account receivable management of e-commerce enterprises based on big data intelligent technology has been built. According to experimental analysis, the accuracy rate of risk prediction of e-commerce enterprise A is 95.63%. After applying the optimized management model, the ratio of accounts receivable balance to current assets has decreased from 34.3% to 28.5%. Studying and constructing models can effectively optimize corporate financial management and play a positive role in the stable development of enterprises. Applying this model to practical teaching can bring new vitality to the practical teaching of vocational education and provide new teaching methods for schools. The limitations of traditional accounts receivable management limit the effectiveness of teaching for financial students. This model effectively optimizes the management mode and brings more skilled knowledge to students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎妙菡完成签到,获得积分10
1秒前
2秒前
2秒前
呱牛完成签到,获得积分10
4秒前
郦稀完成签到 ,获得积分10
5秒前
5秒前
7秒前
8秒前
Jinx完成签到,获得积分10
9秒前
星辰完成签到,获得积分20
11秒前
wangruiyang完成签到 ,获得积分10
12秒前
12秒前
13秒前
dyuephy完成签到,获得积分10
15秒前
星辰发布了新的文献求助10
16秒前
Galri完成签到 ,获得积分10
16秒前
文静不斜完成签到,获得积分10
17秒前
ponny2001发布了新的文献求助10
19秒前
英姑应助科研白小白采纳,获得10
19秒前
沉积岩完成签到,获得积分10
19秒前
ScholarZmm完成签到,获得积分10
20秒前
20秒前
忐忑的草丛完成签到,获得积分10
21秒前
烟花应助嗖一下十分爽采纳,获得10
21秒前
科研通AI2S应助无奈芮采纳,获得10
21秒前
李健的小迷弟应助Felix采纳,获得10
22秒前
22秒前
23秒前
明理囧完成签到,获得积分10
24秒前
情怀应助huanghui采纳,获得10
25秒前
26秒前
哦妈妈咪呀完成签到,获得积分10
27秒前
27秒前
29秒前
32秒前
高文强完成签到,获得积分10
32秒前
打打应助睡觉睡觉采纳,获得10
32秒前
谨慎妙菡发布了新的文献求助10
33秒前
我是老大应助西子阳采纳,获得10
34秒前
唯心如意完成签到,获得积分10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461413
求助须知:如何正确求助?哪些是违规求助? 3055059
关于积分的说明 9046383
捐赠科研通 2744996
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695281