Harmful Cyanobacterial Blooms forecasting based on improved CNN-Transformer and Temporal Fusion Transformer

蓝藻 水华 人工智能 计算机科学 环境科学 预警系统 杠杆(统计) 机器学习 生态学 生物 遗传学 浮游植物 营养物 细菌 电信
作者
Jung Min Ahn,Jungwook Kim,Hongtae Kim,Kyunghyun Kim
出处
期刊:Environmental Technology and Innovation [Elsevier]
卷期号:32: 103314-103314 被引量:4
标识
DOI:10.1016/j.eti.2023.103314
摘要

Harmful Cyanobacteria have the potential to produce toxins and odors, not only in drinking water but also in public waters where recreational activities take place. Thus, predicting the number of Harmful Cyanobacteria cells is crucial for managing their growth. However, predicting changes in aquatic environments is highly challenging, and predicting aquatic ecosystems is particularly difficult due to uncertainty and complexity in unknown areas. In the past, research has focused on mechanism-based prediction techniques, such as EFDC and Delft3D models. However, with the recent rise of artificial intelligence-based deep learning techniques, it has become imperative to leverage these methods. Additionally, it is crucial to develop a method that can directly predict the number of Harmful Cyanobacteria cells, rather than chlorophyll-a, which only indicates the total generation of algae. In this study, a technique based on artificial intelligence deep learning was proposed to directly predict the number of Harmful Cyanobacteria cells. Advanced analysis was conducted to achieve this goal, by combining the CNN and Transformer algorithms and comparing the results with the Temporal Fusion Transformer (TFT) technique. The models were trained using water quality and algae data collected between 2012 and 2021 and validated the predictions using data from 2022. Employing the proposed method for short-term prediction of Harmful Cyanobacteria is anticipated to assist in operating the algae warning system in Korea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Even9完成签到,获得积分10
1秒前
drwlr完成签到,获得积分10
1秒前
农学小王完成签到 ,获得积分10
2秒前
wangcc完成签到,获得积分20
2秒前
3秒前
西贝完成签到 ,获得积分10
3秒前
川上富江发布了新的文献求助10
4秒前
蔡蔡关注了科研通微信公众号
5秒前
兴奋小林完成签到,获得积分10
5秒前
迈克完成签到,获得积分20
5秒前
5秒前
5秒前
Kissshot发布了新的文献求助10
7秒前
斯文败类应助毒文献采纳,获得10
8秒前
qian完成签到,获得积分10
8秒前
Fe2O3完成签到,获得积分10
8秒前
9秒前
huwchem发布了新的文献求助10
10秒前
weixiaoweio发布了新的文献求助10
10秒前
JamesPei应助大创采纳,获得10
11秒前
Aile。完成签到,获得积分10
11秒前
蔡tonghui完成签到,获得积分10
12秒前
幽默胜完成签到,获得积分10
12秒前
14秒前
16秒前
田様应助川上富江采纳,获得10
16秒前
风雨1210完成签到,获得积分10
18秒前
希望天下0贩的0应助joseneo采纳,获得10
18秒前
CipherSage应助温暖忆丹采纳,获得10
18秒前
觅桃乌龙发布了新的文献求助30
18秒前
调研昵称发布了新的文献求助10
19秒前
外向的松完成签到,获得积分10
19秒前
19秒前
FashionBoy应助zhouyunan采纳,获得10
19秒前
Elaine完成签到 ,获得积分10
19秒前
科目三应助huwchem采纳,获得10
20秒前
Kissshot完成签到,获得积分10
21秒前
LeoJun完成签到,获得积分10
21秒前
aaronzhu1995完成签到,获得积分10
22秒前
Anonymous发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308145
求助须知:如何正确求助?哪些是违规求助? 2941687
关于积分的说明 8504876
捐赠科研通 2616322
什么是DOI,文献DOI怎么找? 1429586
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648793