Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems

计算机科学 粒子群优化 多群优化 利用 数学优化 分拆(数论) 群体行为 元启发式 水准点(测量) 人工智能 机器学习 数学 计算机安全 大地测量学 组合数学 地理
作者
En Zhang,Zihao Nie,Qiang Yang,Yiqiao Wang,Dong Liu,Sang-Woon Jeon,Jun Zhang
出处
期刊:Information Sciences [Elsevier]
卷期号:633: 321-342 被引量:38
标识
DOI:10.1016/j.ins.2023.03.086
摘要

Large-scale optimization problems (LSOPs) become increasingly ubiquitous but complicated in real-world scenarios. Confronted with such sophisticated optimization problems, most existing optimizers dramatically lose their effectiveness. To tackle this type of problems effectively, we propose a heterogeneous cognitive learning particle swarm optimizer (HCLPSO). Unlike most existing particle swarm optimizers (PSOs), HCLPSO partitions particles in the current swarm into two categories, namely superior particles (SP) and inferior particles (IP), based on their fitness, and then treats the two categories of particles differently. For inferior particles, this paper devises a random elite cognitive learning (RECL) strategy to update each one with a random superior particle chosen from SP. For superior particles, this paper designs a stochastic dominant cognitive learning (SDCL) strategy to evolve each one by randomly selecting one guiding exemplar from SP and then updating it only when the selected exemplar is better. With the collaboration between these two learning mechanisms, HCLPSO expectedly evolves particles effectively to explore the search space and exploit the found optimal zones appropriately to find optimal solutions to LSOPs. Furthermore, to help HCLPSO traverse the vast search space with promising compromise between intensification and diversification, this paper devises a dynamic swarm partition scheme to dynamically separate particles into the two categories. With this dynamic strategy, HCLPSO gradually switches from exploring the search space to exploiting the found optimal zones intensively. Experiments are executed on the publicly acknowledged CEC2010 and CEC2013 LSOP benchmark suites to compare HCLPSO with several state-of-the-art approaches. Experimental results reveal that HCLPSO is effective to tackle LSOPs, and attains considerably competitive or even far better optimization performance than the compared state-of-the-art large-scale methods. Furthermore, the effectiveness of each component in HCLPSO and the good scalability of HCLPSO are also experimentally verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内永绘里发布了新的文献求助10
1秒前
Lucas应助aa采纳,获得10
1秒前
1秒前
高歌猛进完成签到,获得积分10
3秒前
杳鸢应助Yilinna采纳,获得10
4秒前
4秒前
hhh完成签到,获得积分10
4秒前
小么小完成签到,获得积分10
4秒前
齐齐巴宾完成签到,获得积分0
6秒前
7秒前
7秒前
8秒前
大个应助shYnEss采纳,获得10
9秒前
9秒前
Hello应助咸鱼小武采纳,获得10
10秒前
小腻o发布了新的文献求助10
11秒前
研友_VZG7GZ应助现代小笼包采纳,获得10
11秒前
从容道罡发布了新的文献求助10
12秒前
美满的冬卉完成签到 ,获得积分10
12秒前
13秒前
13秒前
栗子发布了新的文献求助10
13秒前
内永绘里完成签到,获得积分20
16秒前
16秒前
ll发布了新的文献求助10
16秒前
lierking完成签到,获得积分10
17秒前
yy应助happystarr采纳,获得10
17秒前
顾矜应助温简采纳,获得10
18秒前
非对称转录完成签到,获得积分10
18秒前
sy发布了新的文献求助10
19秒前
小蘑菇应助美好斓采纳,获得10
20秒前
桑吉卓玛完成签到,获得积分20
22秒前
汉堡包应助dsdsd采纳,获得10
22秒前
didoo发布了新的文献求助10
22秒前
22秒前
李李完成签到 ,获得积分10
23秒前
24秒前
27秒前
29秒前
29秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222338
求助须知:如何正确求助?哪些是违规求助? 2870958
关于积分的说明 8173314
捐赠科研通 2537983
什么是DOI,文献DOI怎么找? 1370116
科研通“疑难数据库(出版商)”最低求助积分说明 645683
邀请新用户注册赠送积分活动 619507