Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems

计算机科学 粒子群优化 多群优化 利用 数学优化 分拆(数论) 群体行为 元启发式 水准点(测量) 人工智能 机器学习 数学 大地测量学 计算机安全 组合数学 地理
作者
En Zhang,Zihao Nie,Qiang Yang,Yiqiao Wang,Dong Liu,Sang-Woon Jeon,Jun Zhang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:633: 321-342 被引量:49
标识
DOI:10.1016/j.ins.2023.03.086
摘要

Large-scale optimization problems (LSOPs) become increasingly ubiquitous but complicated in real-world scenarios. Confronted with such sophisticated optimization problems, most existing optimizers dramatically lose their effectiveness. To tackle this type of problems effectively, we propose a heterogeneous cognitive learning particle swarm optimizer (HCLPSO). Unlike most existing particle swarm optimizers (PSOs), HCLPSO partitions particles in the current swarm into two categories, namely superior particles (SP) and inferior particles (IP), based on their fitness, and then treats the two categories of particles differently. For inferior particles, this paper devises a random elite cognitive learning (RECL) strategy to update each one with a random superior particle chosen from SP. For superior particles, this paper designs a stochastic dominant cognitive learning (SDCL) strategy to evolve each one by randomly selecting one guiding exemplar from SP and then updating it only when the selected exemplar is better. With the collaboration between these two learning mechanisms, HCLPSO expectedly evolves particles effectively to explore the search space and exploit the found optimal zones appropriately to find optimal solutions to LSOPs. Furthermore, to help HCLPSO traverse the vast search space with promising compromise between intensification and diversification, this paper devises a dynamic swarm partition scheme to dynamically separate particles into the two categories. With this dynamic strategy, HCLPSO gradually switches from exploring the search space to exploiting the found optimal zones intensively. Experiments are executed on the publicly acknowledged CEC2010 and CEC2013 LSOP benchmark suites to compare HCLPSO with several state-of-the-art approaches. Experimental results reveal that HCLPSO is effective to tackle LSOPs, and attains considerably competitive or even far better optimization performance than the compared state-of-the-art large-scale methods. Furthermore, the effectiveness of each component in HCLPSO and the good scalability of HCLPSO are also experimentally verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
进退须臾发布了新的文献求助10
刚刚
cf发布了新的文献求助10
刚刚
迈克老狼发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
ztq417发布了新的文献求助10
2秒前
3秒前
佐哥发布了新的文献求助10
3秒前
许嘉霖发布了新的文献求助10
3秒前
Rebekah发布了新的文献求助20
3秒前
xW12123发布了新的文献求助20
4秒前
4秒前
kong完成签到 ,获得积分10
4秒前
4秒前
可爱的函函应助Duxize采纳,获得10
4秒前
烩面大师发布了新的文献求助10
5秒前
善学以致用应助白开水采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
7秒前
Voloid发布了新的文献求助10
7秒前
树叶发布了新的文献求助20
7秒前
yar应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得30
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得30
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
qqqq发布了新的文献求助10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
jyy应助科研通管家采纳,获得10
8秒前
laber应助科研通管家采纳,获得30
9秒前
斯文败类应助科研通管家采纳,获得50
9秒前
Orange应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111