AATSN: Anatomy Aware Tumor Segmentation Network for PET-CT volumes and images using a lightweight fusion-attention mechanism

计算机科学 分割 人工智能 背景(考古学) 正电子发射断层摄影术 掷骰子 融合机制 深度学习 模式识别(心理学) 融合 核医学 医学 语言学 哲学 古生物学 几何学 数学 脂质双层融合 生物
作者
Ibtihaj Ahmad,Yong Xia,Hengfei Cui,Zain Ul Islam
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106748-106748 被引量:14
标识
DOI:10.1016/j.compbiomed.2023.106748
摘要

Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) provides metabolic information, while Computed Tomography (CT) provides the anatomical context of the tumors. Combined PET-CT segmentation helps in computer-assisted tumor diagnosis, staging, and treatment planning. Current state-of-the-art models mainly rely on early or late fusion techniques. These methods, however, rarely learn PET-CT complementary features and cannot efficiently co-relate anatomical and metabolic features. These drawbacks can be removed by intermediate fusion; however, it produces inaccurate segmentations in the case of heterogeneous textures in the modalities. Furthermore, it requires massive computation. In this work, we propose AATSN (Anatomy Aware Tumor Segmentation Network), which extracts anatomical CT features, and then intermediately fuses with PET features through a fusion-attention mechanism. Our anatomy-aware fusion-attention mechanism fuses the selective useful CT and PET features instead of fusing the full features set. Thus this not only improves the network performance but also requires lesser resources. Furthermore, our model is scalable to 2D images and 3D volumes. The proposed model is rigorously trained, tested, evaluated, and compared to the state-of-the-art through several ablation studies on the largest available datasets. We have achieved a 0.8104 dice score and 2.11 median HD95 score in a 3D setup, while 0.6756 dice score in a 2D setup. We demonstrate that AATSN achieves a significant performance gain while being lightweight at the same time compared to the state-of-the-art methods. The implications of AATSN include improved tumor delineation for diagnosis, analysis, and radiotherapy treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jphu完成签到,获得积分10
刚刚
shinn发布了新的文献求助10
1秒前
典雅碧空应助小涛采纳,获得10
1秒前
adminj发布了新的文献求助20
1秒前
1秒前
静越发布了新的文献求助10
1秒前
怡然万声发布了新的文献求助10
2秒前
2秒前
眼睛大雨筠应助朴素鑫采纳,获得30
2秒前
3秒前
n1gern发布了新的文献求助10
3秒前
siyin发布了新的文献求助10
4秒前
xiaobai完成签到,获得积分20
5秒前
健康的宛菡完成签到 ,获得积分10
5秒前
甜蜜的曼冬完成签到,获得积分10
5秒前
6秒前
詹妮完成签到,获得积分10
6秒前
充电宝应助keyanbaicai采纳,获得10
6秒前
搜集达人应助22222采纳,获得10
7秒前
Melt发布了新的文献求助100
7秒前
乐乐应助结实的半双采纳,获得10
7秒前
VV发布了新的文献求助10
7秒前
lii完成签到,获得积分10
7秒前
kyt完成签到,获得积分10
8秒前
落落发布了新的文献求助10
8秒前
小马甲应助xiaxue采纳,获得10
8秒前
DXXX发布了新的文献求助10
8秒前
Aiden完成签到,获得积分10
8秒前
SYLH应助感动的红酒采纳,获得10
9秒前
wzh19940205完成签到,获得积分10
9秒前
9秒前
深情新之应助某杏采纳,获得10
10秒前
追寻柠檬完成签到,获得积分10
10秒前
讨厌麻烦完成签到,获得积分10
10秒前
所所应助Puffmomozxy采纳,获得30
10秒前
xiaobai发布了新的文献求助10
11秒前
11秒前
o30发布了新的文献求助10
11秒前
雨香完成签到,获得积分10
11秒前
打打应助温婉采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836