AATSN: Anatomy Aware Tumor Segmentation Network for PET-CT volumes and images using a lightweight fusion-attention mechanism

计算机科学 分割 人工智能 背景(考古学) 正电子发射断层摄影术 掷骰子 融合机制 深度学习 模式识别(心理学) 融合 核医学 医学 语言学 哲学 古生物学 几何学 数学 脂质双层融合 生物
作者
Ibtihaj Ahmad,Yong Xia,Hengfei Cui,Zain Ul Islam
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:157: 106748-106748 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.106748
摘要

Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) provides metabolic information, while Computed Tomography (CT) provides the anatomical context of the tumors. Combined PET-CT segmentation helps in computer-assisted tumor diagnosis, staging, and treatment planning. Current state-of-the-art models mainly rely on early or late fusion techniques. These methods, however, rarely learn PET-CT complementary features and cannot efficiently co-relate anatomical and metabolic features. These drawbacks can be removed by intermediate fusion; however, it produces inaccurate segmentations in the case of heterogeneous textures in the modalities. Furthermore, it requires massive computation. In this work, we propose AATSN (Anatomy Aware Tumor Segmentation Network), which extracts anatomical CT features, and then intermediately fuses with PET features through a fusion-attention mechanism. Our anatomy-aware fusion-attention mechanism fuses the selective useful CT and PET features instead of fusing the full features set. Thus this not only improves the network performance but also requires lesser resources. Furthermore, our model is scalable to 2D images and 3D volumes. The proposed model is rigorously trained, tested, evaluated, and compared to the state-of-the-art through several ablation studies on the largest available datasets. We have achieved a 0.8104 dice score and 2.11 median HD95 score in a 3D setup, while 0.6756 dice score in a 2D setup. We demonstrate that AATSN achieves a significant performance gain while being lightweight at the same time compared to the state-of-the-art methods. The implications of AATSN include improved tumor delineation for diagnosis, analysis, and radiotherapy treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kydd发布了新的文献求助10
1秒前
清茶发布了新的文献求助10
1秒前
luo918发布了新的文献求助50
1秒前
子车茗应助JordanZhao采纳,获得10
1秒前
彳亍1117应助tdtk采纳,获得10
2秒前
2秒前
2秒前
子车茗应助杨枝甘露樱桃采纳,获得10
2秒前
汉堡包应助杨枝甘露樱桃采纳,获得10
2秒前
3秒前
4秒前
yql发布了新的文献求助10
5秒前
上官若男应助菠萝蜜采纳,获得10
5秒前
莲莲完成签到,获得积分10
6秒前
席河木鱼发布了新的文献求助10
6秒前
高兴的亦凝完成签到,获得积分20
6秒前
7秒前
7秒前
li发布了新的文献求助10
7秒前
宝川发布了新的文献求助10
7秒前
FashionBoy应助槲寄生采纳,获得10
8秒前
8秒前
9秒前
化学胖子完成签到,获得积分10
9秒前
9秒前
susu完成签到,获得积分10
10秒前
10秒前
豆乳发布了新的文献求助10
11秒前
11秒前
THL发布了新的文献求助10
11秒前
11秒前
11秒前
cunzhang发布了新的文献求助10
12秒前
Daisy完成签到,获得积分10
13秒前
恶魔强发布了新的文献求助10
14秒前
汉堡包应助zzt采纳,获得10
15秒前
哈哈伊完成签到,获得积分10
15秒前
zsj关注了科研通微信公众号
15秒前
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608