Opposing Hysteresis Patterns in Flow and Outflow Macroscopic Fundamental Diagrams and Their Implications

流出 流量(数学) 图表 磁滞 机械 滞后 流量网络 流量(计算机网络) 模拟 顺时针方向的 功能(生物学) 统计物理学 控制理论(社会学) 数学 计量经济学 计算机科学 统计 物理 数学优化 气象学 几何学 旋转(数学) 人工智能 控制(管理) 生物 进化生物学 量子力学 计算机安全 计算机网络
作者
Guanhao Xu,Pengxiang Zhang,Vikash V. Gayah,Xianbiao Hu
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (8): 100-117 被引量:3
标识
DOI:10.1177/03611981231155421
摘要

Two key aggregated traffic models are the relationship between average network flow and density (known as the network or flow macroscopic fundamental diagram [flow-MFD]) and the relationship between trip completion and density (known as network exit function or the outflow-MFD [o-FMD]). The flow- and o-MFDs have been shown to be related by average network length and average trip distance under steady-state conditions. However, recent studies have demonstrated that these two relationships might have different patterns when traffic conditions are allowed to vary: the flow-MFD exhibits a clockwise hysteresis loop, while the o-MFD exhibits a counter-clockwise loop. One recent study attributes this behavior to the presence of bottlenecks within the network. The present paper demonstrates that this phenomenon may arise even without bottlenecks present and offers an alternative, but more general, explanation for these findings: a vehicle’s entire trip contributes to a network’s average flow, while only its end contributes to the trip completion rate. This lag can also be exaggerated by trips with different lengths, and it can lead to other patterns in the o-MFD such as figure-eight patterns. A simple arterial example is used to demonstrate this explanation and reveal the expected patterns, and they are also identified in real networks using empirical data. Then, simulations of a congestible ring network are used to unveil features that might increase or diminish the differences between the flow- and o-MFDs. Finally, more realistic simulations are used to confirm that these behaviors arise in real networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助穿山甲采纳,获得30
刚刚
2秒前
呀呀呀完成签到 ,获得积分10
2秒前
阿瑶发布了新的文献求助10
3秒前
3秒前
3秒前
orixero应助炙热的小小采纳,获得10
4秒前
6秒前
ju龙哥发布了新的文献求助10
6秒前
9秒前
沐沐1003发布了新的文献求助10
10秒前
SciGPT应助lio采纳,获得30
10秒前
10秒前
11秒前
11秒前
12秒前
大模型应助123采纳,获得10
12秒前
想飞的猪发布了新的文献求助10
14秒前
14秒前
落寞寒荷发布了新的文献求助10
14秒前
smallyu发布了新的文献求助10
15秒前
mini完成签到 ,获得积分10
16秒前
17秒前
17秒前
噗噗发布了新的文献求助30
18秒前
烦死了啦完成签到,获得积分10
21秒前
21秒前
小灰熊发布了新的文献求助10
23秒前
无花果应助liupai00采纳,获得10
24秒前
24秒前
沐沐1003发布了新的文献求助30
24秒前
25秒前
wanci应助青春奇谈采纳,获得10
26秒前
legaldie完成签到,获得积分20
27秒前
28秒前
烂漫易绿发布了新的文献求助10
28秒前
皮卡啾发布了新的文献求助10
30秒前
JaneBing发布了新的文献求助10
31秒前
包容汉堡完成签到 ,获得积分10
33秒前
33秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388003
求助须知:如何正确求助?哪些是违规求助? 3000527
关于积分的说明 8791704
捐赠科研通 2686552
什么是DOI,文献DOI怎么找? 1471700
科研通“疑难数据库(出版商)”最低求助积分说明 680474
邀请新用户注册赠送积分活动 673193