超级电容器
材料科学
电极
电容
生物量(生态学)
多孔性
纳米技术
碳纤维
化学工程
复合材料
复合数
工程类
生态学
化学
生物
物理化学
作者
Xiaomin Yang,Ting Lv,Jieshan Qiu
出处
期刊:Small
[Wiley]
日期:2023-02-25
卷期号:19 (22)
被引量:63
标识
DOI:10.1002/smll.202300336
摘要
Abstract Biomass‐based porous carbon (BPC) with renewability and flexible nano/microstructure tunability has attracted increasing attention as efficient and cheap electrode materials for supercapacitors. To meet commercial needs, high mass‐loading electrodes with high areal capacitance are preferred when designing supercapacitors. The increased mass percentage of active materials can effectively improve the energy density of supercapacitors. However, as the thickness of the electrode increases, it will face the following challenges including severely blocked ion transport channels, poor charging dynamics, poor electrode structural stability, and complex preparation processes. A bridge between theoretical research and practical applications of BPC electrodes for supercapacitors needs to be established. In this review, the advances of high mass‐loading BPC electrodes for supercapacitors are summarized based on different biomass precursors. The key performance evaluation parameters of the high mass‐loading electrodes are analyzed, and the performance influencing factors are systematically discussed, including specific surface area, pore structure, electrical conductivity, and surface functional groups. Subsequently, the promising optimization strategies for high mass‐loading electrodes are summarized, including the structure regulation of electrode materials and the optimization of other supercapacitor components. Finally, the major challenges and opportunities of high mass‐loading BPC electrodes in the future are discussed and outlined.
科研通智能强力驱动
Strongly Powered by AbleSci AI