已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Surface Soil Moisture Content using Multispectral Remote Sensing and Machine Learning

多光谱图像 含水量 遥感 环境科学 灌溉调度 灌溉 土壤科学 土壤水分 地质学 岩土工程 生态学 生物
作者
Suyog Balasaheb Khose,Damodhara Rao Mailapalli
标识
DOI:10.5194/egusphere-egu23-7778
摘要

Information on near-surface soil moisture content (SMC) is very important for various applications such as irrigation scheduling, precision farming, watershed management, climate change analysis, drought prediction, meteorological investigations etc. Soil moisture information acquired from remotely sensed satellite data has been widely used in the recent past. However, these remote sensing data's low spatial and temporal resolution is a limitation for agricultural applications. Unmanned aerial vehicles (UAV)-based soil moisture predictions are thriving, but the studies are limited with fewer ground truth data. This study aims to predict the surface soil moisture content using UAV-based multispectral data and machine learning techniques. The UAV-based multispectral data are acquired from an altitude of 40 m. Surface soil samples were collected at an interval of two days to estimate gravimetric soil moisture content. Four machine-learning algorithms (Linear Regression, SVR, RFR, KNN) were used to develop the relationship between near-surface SMC and multispectral data. At high surface SMC, the soil has low spectral reflectance as compared to low surface SMC. The linear regression algorithm performed best, with R2 as 0.89 among the other ML algorithms. Also, blue band reflectance was correlated well with the surface SMC as compared to green, red, NIR and red-edge bands. The findings indicated that UAV-based high-resolution multispectral image analytics could accurately predict the surface SMC. The developed approach of estimation of near SMC may be helpful for farmers and irrigation planners to schedule irrigation and crop management accordingly.Keywords:  Surface soil moisture content; Remote sensing; UAV; Multispectral imageries; Machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy发布了新的文献求助10
刚刚
1秒前
hancahngxiao发布了新的文献求助10
5秒前
5秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
语行完成签到 ,获得积分10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
VDC应助6666采纳,获得30
7秒前
www完成签到 ,获得积分10
7秒前
mmyhn发布了新的文献求助10
11秒前
田様应助13采纳,获得10
13秒前
xiuxiuzhang完成签到 ,获得积分10
14秒前
17秒前
FashionBoy应助肯瑞恩哭哭采纳,获得10
17秒前
冷傲山彤发布了新的文献求助10
18秒前
开朗的雪珊完成签到,获得积分10
18秒前
吴迪发布了新的文献求助10
19秒前
郑麻发布了新的文献求助10
21秒前
21秒前
22秒前
深情安青应助不淄采纳,获得10
22秒前
23秒前
梅狸猫不读博完成签到 ,获得积分10
24秒前
24秒前
默默襄完成签到 ,获得积分10
25秒前
情怀应助小虎牙采纳,获得10
25秒前
陆负剑发布了新的文献求助10
25秒前
Wilson发布了新的文献求助10
27秒前
13完成签到,获得积分10
28秒前
28秒前
29秒前
无情的rr完成签到 ,获得积分10
30秒前
31秒前
Hillson完成签到,获得积分10
31秒前
Wilson完成签到,获得积分10
32秒前
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590251
求助须知:如何正确求助?哪些是违规求助? 4674657
关于积分的说明 14794952
捐赠科研通 4630846
什么是DOI,文献DOI怎么找? 2532648
邀请新用户注册赠送积分活动 1501221
关于科研通互助平台的介绍 1468576