Prediction of Surface Soil Moisture Content using Multispectral Remote Sensing and Machine Learning

多光谱图像 含水量 遥感 环境科学 灌溉调度 灌溉 土壤科学 土壤水分 地质学 岩土工程 生态学 生物
作者
Suyog Balasaheb Khose,Damodhara Rao Mailapalli
标识
DOI:10.5194/egusphere-egu23-7778
摘要

Information on near-surface soil moisture content (SMC) is very important for various applications such as irrigation scheduling, precision farming, watershed management, climate change analysis, drought prediction, meteorological investigations etc. Soil moisture information acquired from remotely sensed satellite data has been widely used in the recent past. However, these remote sensing data's low spatial and temporal resolution is a limitation for agricultural applications. Unmanned aerial vehicles (UAV)-based soil moisture predictions are thriving, but the studies are limited with fewer ground truth data. This study aims to predict the surface soil moisture content using UAV-based multispectral data and machine learning techniques. The UAV-based multispectral data are acquired from an altitude of 40 m. Surface soil samples were collected at an interval of two days to estimate gravimetric soil moisture content. Four machine-learning algorithms (Linear Regression, SVR, RFR, KNN) were used to develop the relationship between near-surface SMC and multispectral data. At high surface SMC, the soil has low spectral reflectance as compared to low surface SMC. The linear regression algorithm performed best, with R2 as 0.89 among the other ML algorithms. Also, blue band reflectance was correlated well with the surface SMC as compared to green, red, NIR and red-edge bands. The findings indicated that UAV-based high-resolution multispectral image analytics could accurately predict the surface SMC. The developed approach of estimation of near SMC may be helpful for farmers and irrigation planners to schedule irrigation and crop management accordingly.Keywords:  Surface soil moisture content; Remote sensing; UAV; Multispectral imageries; Machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
医学小王完成签到 ,获得积分10
3秒前
菜狗发布了新的文献求助10
3秒前
xiying完成签到 ,获得积分10
5秒前
april完成签到,获得积分10
5秒前
Ss发布了新的文献求助10
6秒前
漠池完成签到,获得积分10
6秒前
lsy完成签到,获得积分10
7秒前
默默的无敌完成签到,获得积分10
8秒前
落后的夜阑完成签到,获得积分10
9秒前
hwl26完成签到,获得积分10
9秒前
留胡子的小虾米完成签到,获得积分10
10秒前
ZXW完成签到,获得积分10
10秒前
YangSY完成签到,获得积分10
11秒前
小糊涂完成签到 ,获得积分10
11秒前
发呆的小号完成签到 ,获得积分10
14秒前
华仔应助潘越采纳,获得10
14秒前
鹤昀完成签到 ,获得积分10
14秒前
默默莫莫完成签到 ,获得积分10
19秒前
脑洞疼应助郭玉强采纳,获得10
20秒前
秀丽笑容完成签到 ,获得积分10
22秒前
smile完成签到,获得积分10
22秒前
shineshine完成签到 ,获得积分10
24秒前
25秒前
颿曦完成签到,获得积分10
27秒前
zenabia完成签到 ,获得积分10
29秒前
852应助科研通管家采纳,获得10
33秒前
zimo应助科研通管家采纳,获得10
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
Hello应助科研通管家采纳,获得10
33秒前
一见憘完成签到 ,获得积分10
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
Owen应助科研通管家采纳,获得10
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
jjyy应助科研通管家采纳,获得20
33秒前
Ava应助科研通管家采纳,获得10
34秒前
HAL应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4542626
求助须知:如何正确求助?哪些是违规求助? 3975677
关于积分的说明 12311980
捐赠科研通 3643430
什么是DOI,文献DOI怎么找? 2006498
邀请新用户注册赠送积分活动 1041837
科研通“疑难数据库(出版商)”最低求助积分说明 930975