Prediction of Surface Soil Moisture Content using Multispectral Remote Sensing and Machine Learning

多光谱图像 含水量 遥感 环境科学 灌溉调度 灌溉 土壤科学 土壤水分 地质学 岩土工程 生态学 生物
作者
Suyog Balasaheb Khose,Damodhara Rao Mailapalli
标识
DOI:10.5194/egusphere-egu23-7778
摘要

Information on near-surface soil moisture content (SMC) is very important for various applications such as irrigation scheduling, precision farming, watershed management, climate change analysis, drought prediction, meteorological investigations etc. Soil moisture information acquired from remotely sensed satellite data has been widely used in the recent past. However, these remote sensing data's low spatial and temporal resolution is a limitation for agricultural applications. Unmanned aerial vehicles (UAV)-based soil moisture predictions are thriving, but the studies are limited with fewer ground truth data. This study aims to predict the surface soil moisture content using UAV-based multispectral data and machine learning techniques. The UAV-based multispectral data are acquired from an altitude of 40 m. Surface soil samples were collected at an interval of two days to estimate gravimetric soil moisture content. Four machine-learning algorithms (Linear Regression, SVR, RFR, KNN) were used to develop the relationship between near-surface SMC and multispectral data. At high surface SMC, the soil has low spectral reflectance as compared to low surface SMC. The linear regression algorithm performed best, with R2 as 0.89 among the other ML algorithms. Also, blue band reflectance was correlated well with the surface SMC as compared to green, red, NIR and red-edge bands. The findings indicated that UAV-based high-resolution multispectral image analytics could accurately predict the surface SMC. The developed approach of estimation of near SMC may be helpful for farmers and irrigation planners to schedule irrigation and crop management accordingly.Keywords:  Surface soil moisture content; Remote sensing; UAV; Multispectral imageries; Machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyuan完成签到,获得积分10
刚刚
majf完成签到 ,获得积分10
刚刚
jsinm-thyroid发布了新的文献求助10
刚刚
唐嘉镁完成签到,获得积分20
刚刚
赘婿应助甜美网络采纳,获得10
1秒前
无极微光应助drZZY采纳,获得20
1秒前
Jasper应助跳跃凝竹采纳,获得10
1秒前
英姑应助xiaojiahuo采纳,获得10
2秒前
普鲁卡因发布了新的文献求助10
2秒前
我能发顶刊完成签到,获得积分10
2秒前
popvich应助Agnes采纳,获得10
2秒前
3秒前
李健的小迷弟应助guoguo采纳,获得10
3秒前
3秒前
微笑的外绣完成签到 ,获得积分10
3秒前
曲奇饼干完成签到,获得积分10
3秒前
3秒前
3秒前
觅与蜜完成签到,获得积分10
4秒前
大模型应助岁岁平安采纳,获得10
4秒前
4秒前
4秒前
bcsunny2022发布了新的文献求助10
4秒前
牛牛完成签到,获得积分10
5秒前
天天快乐应助周至采纳,获得10
5秒前
既然寄了,那就开摆完成签到 ,获得积分10
5秒前
6秒前
李健应助zena92采纳,获得10
6秒前
柒柒完成签到,获得积分10
6秒前
难搞了完成签到,获得积分10
6秒前
零位完成签到,获得积分10
7秒前
爆米花应助赵泽鹏采纳,获得10
7秒前
啊福完成签到,获得积分10
7秒前
7秒前
xxy发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
时深完成签到 ,获得积分10
8秒前
8秒前
情怀应助如常采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034