Prediction of Surface Soil Moisture Content using Multispectral Remote Sensing and Machine Learning

多光谱图像 含水量 遥感 环境科学 灌溉调度 灌溉 土壤科学 土壤水分 地质学 生态学 生物 岩土工程
作者
Suyog Balasaheb Khose,Damodhara Rao Mailapalli
标识
DOI:10.5194/egusphere-egu23-7778
摘要

Information on near-surface soil moisture content (SMC) is very important for various applications such as irrigation scheduling, precision farming, watershed management, climate change analysis, drought prediction, meteorological investigations etc. Soil moisture information acquired from remotely sensed satellite data has been widely used in the recent past. However, these remote sensing data's low spatial and temporal resolution is a limitation for agricultural applications. Unmanned aerial vehicles (UAV)-based soil moisture predictions are thriving, but the studies are limited with fewer ground truth data. This study aims to predict the surface soil moisture content using UAV-based multispectral data and machine learning techniques. The UAV-based multispectral data are acquired from an altitude of 40 m. Surface soil samples were collected at an interval of two days to estimate gravimetric soil moisture content. Four machine-learning algorithms (Linear Regression, SVR, RFR, KNN) were used to develop the relationship between near-surface SMC and multispectral data. At high surface SMC, the soil has low spectral reflectance as compared to low surface SMC. The linear regression algorithm performed best, with R2 as 0.89 among the other ML algorithms. Also, blue band reflectance was correlated well with the surface SMC as compared to green, red, NIR and red-edge bands. The findings indicated that UAV-based high-resolution multispectral image analytics could accurately predict the surface SMC. The developed approach of estimation of near SMC may be helpful for farmers and irrigation planners to schedule irrigation and crop management accordingly.Keywords:  Surface soil moisture content; Remote sensing; UAV; Multispectral imageries; Machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
进击的C小蓝完成签到,获得积分20
6秒前
klicking完成签到,获得积分10
7秒前
超级李包包完成签到,获得积分20
7秒前
8秒前
9秒前
梦鱼完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
13秒前
misha991完成签到,获得积分20
14秒前
lf-leo发布了新的文献求助10
15秒前
Chiver发布了新的文献求助10
15秒前
兰彻发布了新的文献求助10
15秒前
cuiguo发布了新的文献求助10
15秒前
16秒前
嘻嘻嘻嘻发布了新的文献求助10
17秒前
打打应助发嗲的高跟鞋采纳,获得10
17秒前
大好人活该你发顶刊完成签到,获得积分10
21秒前
joy1234456完成签到,获得积分10
22秒前
Cyrus2022发布了新的文献求助10
22秒前
烟花应助cuiguo采纳,获得10
22秒前
26秒前
惠小之完成签到,获得积分10
27秒前
科研通AI2S应助joy1234456采纳,获得10
27秒前
28秒前
chillsnow完成签到,获得积分10
29秒前
小谢完成签到,获得积分10
31秒前
32秒前
大胆的雪糕完成签到,获得积分10
32秒前
34秒前
34秒前
Rachael完成签到,获得积分10
34秒前
小栗发布了新的文献求助10
35秒前
35秒前
37秒前
在水一方应助阿辽采纳,获得10
37秒前
充电宝应助陈晗予采纳,获得10
38秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124564
求助须知:如何正确求助?哪些是违规求助? 2774883
关于积分的说明 7724421
捐赠科研通 2430307
什么是DOI,文献DOI怎么找? 1291057
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297