已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Surface Soil Moisture Content using Multispectral Remote Sensing and Machine Learning

多光谱图像 含水量 遥感 环境科学 灌溉调度 灌溉 土壤科学 土壤水分 地质学 生态学 生物 岩土工程
作者
Suyog Balasaheb Khose,Damodhara Rao Mailapalli
标识
DOI:10.5194/egusphere-egu23-7778
摘要

Information on near-surface soil moisture content (SMC) is very important for various applications such as irrigation scheduling, precision farming, watershed management, climate change analysis, drought prediction, meteorological investigations etc. Soil moisture information acquired from remotely sensed satellite data has been widely used in the recent past. However, these remote sensing data's low spatial and temporal resolution is a limitation for agricultural applications. Unmanned aerial vehicles (UAV)-based soil moisture predictions are thriving, but the studies are limited with fewer ground truth data. This study aims to predict the surface soil moisture content using UAV-based multispectral data and machine learning techniques. The UAV-based multispectral data are acquired from an altitude of 40 m. Surface soil samples were collected at an interval of two days to estimate gravimetric soil moisture content. Four machine-learning algorithms (Linear Regression, SVR, RFR, KNN) were used to develop the relationship between near-surface SMC and multispectral data. At high surface SMC, the soil has low spectral reflectance as compared to low surface SMC. The linear regression algorithm performed best, with R2 as 0.89 among the other ML algorithms. Also, blue band reflectance was correlated well with the surface SMC as compared to green, red, NIR and red-edge bands. The findings indicated that UAV-based high-resolution multispectral image analytics could accurately predict the surface SMC. The developed approach of estimation of near SMC may be helpful for farmers and irrigation planners to schedule irrigation and crop management accordingly.Keywords:  Surface soil moisture content; Remote sensing; UAV; Multispectral imageries; Machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zgjc发布了新的文献求助10
刚刚
Owen应助Tsingyuan采纳,获得50
1秒前
licrazy发布了新的文献求助10
2秒前
FashionBoy应助容容容采纳,获得10
2秒前
机械民工发布了新的文献求助10
3秒前
龙仔完成签到 ,获得积分10
5秒前
完美世界应助小石头采纳,获得10
6秒前
7秒前
Helen完成签到,获得积分10
7秒前
请风再拂面完成签到,获得积分10
8秒前
充电宝应助licrazy采纳,获得10
8秒前
空啊空完成签到 ,获得积分10
9秒前
11秒前
黄黄大可爱完成签到,获得积分10
16秒前
17秒前
naru发布了新的文献求助10
17秒前
Su完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
边缘发布了新的文献求助10
23秒前
Owen应助和谐的哑铃采纳,获得30
23秒前
23秒前
pearl发布了新的文献求助10
25秒前
26秒前
26秒前
苞大米发布了新的文献求助10
26秒前
坚定背包发布了新的文献求助10
29秒前
Criminology34应助风语村采纳,获得10
29秒前
你求我一下完成签到,获得积分10
30秒前
Y元Y完成签到,获得积分10
31秒前
wang发布了新的文献求助10
31秒前
32秒前
34秒前
青年才俊发布了新的文献求助10
35秒前
36秒前
英俊发布了新的文献求助10
37秒前
willenliu发布了新的文献求助10
37秒前
ZJX应助小鬼1004采纳,获得10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252617
求助须知:如何正确求助?哪些是违规求助? 4416302
关于积分的说明 13749315
捐赠科研通 4288295
什么是DOI,文献DOI怎么找? 2352875
邀请新用户注册赠送积分活动 1349672
关于科研通互助平台的介绍 1309204