Prediction of Surface Soil Moisture Content using Multispectral Remote Sensing and Machine Learning

多光谱图像 含水量 遥感 环境科学 灌溉调度 灌溉 土壤科学 土壤水分 地质学 生态学 生物 岩土工程
作者
Suyog Balasaheb Khose,Damodhara Rao Mailapalli
标识
DOI:10.5194/egusphere-egu23-7778
摘要

Information on near-surface soil moisture content (SMC) is very important for various applications such as irrigation scheduling, precision farming, watershed management, climate change analysis, drought prediction, meteorological investigations etc. Soil moisture information acquired from remotely sensed satellite data has been widely used in the recent past. However, these remote sensing data's low spatial and temporal resolution is a limitation for agricultural applications. Unmanned aerial vehicles (UAV)-based soil moisture predictions are thriving, but the studies are limited with fewer ground truth data. This study aims to predict the surface soil moisture content using UAV-based multispectral data and machine learning techniques. The UAV-based multispectral data are acquired from an altitude of 40 m. Surface soil samples were collected at an interval of two days to estimate gravimetric soil moisture content. Four machine-learning algorithms (Linear Regression, SVR, RFR, KNN) were used to develop the relationship between near-surface SMC and multispectral data. At high surface SMC, the soil has low spectral reflectance as compared to low surface SMC. The linear regression algorithm performed best, with R2 as 0.89 among the other ML algorithms. Also, blue band reflectance was correlated well with the surface SMC as compared to green, red, NIR and red-edge bands. The findings indicated that UAV-based high-resolution multispectral image analytics could accurately predict the surface SMC. The developed approach of estimation of near SMC may be helpful for farmers and irrigation planners to schedule irrigation and crop management accordingly.Keywords:  Surface soil moisture content; Remote sensing; UAV; Multispectral imageries; Machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mercury完成签到 ,获得积分10
1秒前
1秒前
111111完成签到,获得积分10
2秒前
2秒前
舒服的雁兰完成签到,获得积分10
2秒前
自由的尔蓉完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
昭玥完成签到,获得积分10
4秒前
皇家咖啡完成签到,获得积分10
4秒前
幽魂完成签到,获得积分10
4秒前
Zy990222完成签到,获得积分10
4秒前
4秒前
高大的蜡烛完成签到,获得积分10
4秒前
慕青应助龙华之士采纳,获得10
6秒前
HY兑完成签到,获得积分10
6秒前
哒哒完成签到,获得积分10
7秒前
7秒前
Zy990222发布了新的文献求助10
7秒前
Starry完成签到,获得积分10
7秒前
7秒前
7秒前
沈轻舟完成签到 ,获得积分10
7秒前
JOJO完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
生动初蓝发布了新的文献求助10
8秒前
哈基米德应助jiw采纳,获得20
8秒前
拉布拉多多不多完成签到,获得积分10
8秒前
9秒前
思苇完成签到,获得积分10
9秒前
Cyrus2022完成签到,获得积分10
10秒前
shuenghei完成签到,获得积分10
10秒前
非我完成签到 ,获得积分10
10秒前
11秒前
平常的狗应助r93527005采纳,获得10
11秒前
vvv完成签到 ,获得积分10
11秒前
天天快乐应助灯塔水母采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051