Prediction of Surface Soil Moisture Content using Multispectral Remote Sensing and Machine Learning

多光谱图像 含水量 遥感 环境科学 灌溉调度 灌溉 土壤科学 土壤水分 地质学 生态学 生物 岩土工程
作者
Suyog Balasaheb Khose,Damodhara Rao Mailapalli
标识
DOI:10.5194/egusphere-egu23-7778
摘要

Information on near-surface soil moisture content (SMC) is very important for various applications such as irrigation scheduling, precision farming, watershed management, climate change analysis, drought prediction, meteorological investigations etc. Soil moisture information acquired from remotely sensed satellite data has been widely used in the recent past. However, these remote sensing data's low spatial and temporal resolution is a limitation for agricultural applications. Unmanned aerial vehicles (UAV)-based soil moisture predictions are thriving, but the studies are limited with fewer ground truth data. This study aims to predict the surface soil moisture content using UAV-based multispectral data and machine learning techniques. The UAV-based multispectral data are acquired from an altitude of 40 m. Surface soil samples were collected at an interval of two days to estimate gravimetric soil moisture content. Four machine-learning algorithms (Linear Regression, SVR, RFR, KNN) were used to develop the relationship between near-surface SMC and multispectral data. At high surface SMC, the soil has low spectral reflectance as compared to low surface SMC. The linear regression algorithm performed best, with R2 as 0.89 among the other ML algorithms. Also, blue band reflectance was correlated well with the surface SMC as compared to green, red, NIR and red-edge bands. The findings indicated that UAV-based high-resolution multispectral image analytics could accurately predict the surface SMC. The developed approach of estimation of near SMC may be helpful for farmers and irrigation planners to schedule irrigation and crop management accordingly.Keywords:  Surface soil moisture content; Remote sensing; UAV; Multispectral imageries; Machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康球窗子完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
来路遥迢发布了新的文献求助10
2秒前
Jankin发布了新的文献求助10
2秒前
2秒前
一夜轻舟完成签到,获得积分10
3秒前
ayeben发布了新的文献求助10
3秒前
笨笨烨华完成签到 ,获得积分10
4秒前
pl656完成签到,获得积分10
5秒前
动听的蛟凤完成签到,获得积分10
6秒前
Eclipse12138完成签到,获得积分10
6秒前
11发布了新的文献求助10
7秒前
dounai发布了新的文献求助10
7秒前
Zoe柑完成签到,获得积分10
7秒前
wynne完成签到 ,获得积分10
7秒前
科研通AI6.1应助且放青山远采纳,获得150
7秒前
钟金男完成签到,获得积分10
7秒前
lll完成签到,获得积分10
7秒前
CodeCraft应助安详忆梅采纳,获得10
8秒前
9秒前
慕青应助陈征采纳,获得10
9秒前
学林书屋完成签到,获得积分10
10秒前
大个应助生气的鸡蛋采纳,获得10
10秒前
11秒前
科研通AI6.1应助沉默的驳采纳,获得10
12秒前
13秒前
GR完成签到,获得积分10
14秒前
bkagyin应助学林书屋采纳,获得10
16秒前
无花果应助hys采纳,获得10
16秒前
念一发布了新的文献求助10
16秒前
16秒前
16秒前
阿诺完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
17秒前
122319发布了新的文献求助10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400