Prediction of Surface Soil Moisture Content using Multispectral Remote Sensing and Machine Learning

多光谱图像 含水量 遥感 环境科学 灌溉调度 灌溉 土壤科学 土壤水分 地质学 生态学 生物 岩土工程
作者
Suyog Balasaheb Khose,Damodhara Rao Mailapalli
标识
DOI:10.5194/egusphere-egu23-7778
摘要

Information on near-surface soil moisture content (SMC) is very important for various applications such as irrigation scheduling, precision farming, watershed management, climate change analysis, drought prediction, meteorological investigations etc. Soil moisture information acquired from remotely sensed satellite data has been widely used in the recent past. However, these remote sensing data's low spatial and temporal resolution is a limitation for agricultural applications. Unmanned aerial vehicles (UAV)-based soil moisture predictions are thriving, but the studies are limited with fewer ground truth data. This study aims to predict the surface soil moisture content using UAV-based multispectral data and machine learning techniques. The UAV-based multispectral data are acquired from an altitude of 40 m. Surface soil samples were collected at an interval of two days to estimate gravimetric soil moisture content. Four machine-learning algorithms (Linear Regression, SVR, RFR, KNN) were used to develop the relationship between near-surface SMC and multispectral data. At high surface SMC, the soil has low spectral reflectance as compared to low surface SMC. The linear regression algorithm performed best, with R2 as 0.89 among the other ML algorithms. Also, blue band reflectance was correlated well with the surface SMC as compared to green, red, NIR and red-edge bands. The findings indicated that UAV-based high-resolution multispectral image analytics could accurately predict the surface SMC. The developed approach of estimation of near SMC may be helpful for farmers and irrigation planners to schedule irrigation and crop management accordingly.Keywords:  Surface soil moisture content; Remote sensing; UAV; Multispectral imageries; Machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Evall采纳,获得10
1秒前
1秒前
2秒前
3秒前
思源应助Frim采纳,获得10
4秒前
热心映容完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
orixero应助今天早睡呀采纳,获得10
9秒前
Singularity应助藿藿采纳,获得10
9秒前
Menand完成签到,获得积分10
9秒前
9秒前
冷酷芝完成签到,获得积分10
9秒前
小鱼完成签到,获得积分10
11秒前
11秒前
骜111完成签到,获得积分10
12秒前
Eureka完成签到,获得积分10
13秒前
yy发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
眼睛大含双完成签到 ,获得积分10
17秒前
17秒前
18秒前
18秒前
Singularity应助藿藿采纳,获得10
18秒前
19秒前
Frim发布了新的文献求助10
20秒前
20秒前
霸气采文发布了新的文献求助10
22秒前
住在月亮隔壁完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
wmecjtu完成签到,获得积分20
23秒前
平淡如天完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770111
求助须知:如何正确求助?哪些是违规求助? 5582948
关于积分的说明 15423385
捐赠科研通 4903664
什么是DOI,文献DOI怎么找? 2638315
邀请新用户注册赠送积分活动 1586143
关于科研通互助平台的介绍 1541287