Prediction of Surface Soil Moisture Content using Multispectral Remote Sensing and Machine Learning

多光谱图像 含水量 遥感 环境科学 灌溉调度 灌溉 土壤科学 土壤水分 地质学 岩土工程 生态学 生物
作者
Suyog Balasaheb Khose,Damodhara Rao Mailapalli
标识
DOI:10.5194/egusphere-egu23-7778
摘要

Information on near-surface soil moisture content (SMC) is very important for various applications such as irrigation scheduling, precision farming, watershed management, climate change analysis, drought prediction, meteorological investigations etc. Soil moisture information acquired from remotely sensed satellite data has been widely used in the recent past. However, these remote sensing data's low spatial and temporal resolution is a limitation for agricultural applications. Unmanned aerial vehicles (UAV)-based soil moisture predictions are thriving, but the studies are limited with fewer ground truth data. This study aims to predict the surface soil moisture content using UAV-based multispectral data and machine learning techniques. The UAV-based multispectral data are acquired from an altitude of 40 m. Surface soil samples were collected at an interval of two days to estimate gravimetric soil moisture content. Four machine-learning algorithms (Linear Regression, SVR, RFR, KNN) were used to develop the relationship between near-surface SMC and multispectral data. At high surface SMC, the soil has low spectral reflectance as compared to low surface SMC. The linear regression algorithm performed best, with R2 as 0.89 among the other ML algorithms. Also, blue band reflectance was correlated well with the surface SMC as compared to green, red, NIR and red-edge bands. The findings indicated that UAV-based high-resolution multispectral image analytics could accurately predict the surface SMC. The developed approach of estimation of near SMC may be helpful for farmers and irrigation planners to schedule irrigation and crop management accordingly.Keywords:  Surface soil moisture content; Remote sensing; UAV; Multispectral imageries; Machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨永乾发布了新的文献求助10
刚刚
2秒前
CHL完成签到 ,获得积分10
2秒前
4秒前
茨茨喵喵完成签到,获得积分10
4秒前
小灰灰完成签到,获得积分10
4秒前
搜集达人应助poki采纳,获得10
5秒前
酷波er应助向晚采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
灯座发布了新的文献求助10
8秒前
深竹月完成签到,获得积分10
9秒前
ccc发布了新的文献求助10
9秒前
独白完成签到 ,获得积分10
9秒前
时来运转完成签到 ,获得积分10
9秒前
欢城发布了新的文献求助10
11秒前
GEeZiii完成签到,获得积分10
11秒前
小坤不慌完成签到 ,获得积分10
11秒前
凶狗碎大石完成签到,获得积分10
13秒前
13秒前
谢大喵发布了新的文献求助10
13秒前
风清扬发布了新的文献求助10
14秒前
Linda完成签到 ,获得积分10
15秒前
fanghaoxiang发布了新的文献求助30
15秒前
寻道图强应助HH采纳,获得30
16秒前
youyou发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
汉堡包应助dd采纳,获得10
17秒前
可爱的函函应助hugdoggy采纳,获得10
18秒前
18秒前
19秒前
19秒前
chaney完成签到 ,获得积分10
19秒前
一只龟龟完成签到,获得积分10
20秒前
Sjingjia发布了新的文献求助10
20秒前
追梦人发布了新的文献求助50
21秒前
21秒前
21秒前
keyanbaicai完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684190
求助须知:如何正确求助?哪些是违规求助? 5035564
关于积分的说明 15183757
捐赠科研通 4843529
什么是DOI,文献DOI怎么找? 2596718
邀请新用户注册赠送积分活动 1549418
关于科研通互助平台的介绍 1507952