THz Wave Defect Detection Technology Based on Attention Autoencoder and Semisupervised Ladder Network

计算机科学 自编码 人工智能 特征提取 模式识别(心理学) 太赫兹辐射 小波变换 小波 无损检测 频域 信号(编程语言) 时域 人工神经网络 计算机视觉 材料科学 物理 光电子学 量子力学 程序设计语言
作者
Zhonghao Zhang,Da‐Wei Ding,Liming Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8961-8972 被引量:1
标识
DOI:10.1109/jsen.2023.3246040
摘要

Insulation equipment plays an important role in mechanical support and electrical insulation in the power grid. When there are defects in the insulation equipment, the safe operation of the power grid will be seriously threatened. Non-destructive testing (NDT) is an important means to timely find hidden dangers. In view of the low reliability of defect recognition in the case of insufficient sample marks, based on autoencoder feature extraction and semisupervised networks, combined with a terahertz (THz) wave detection device, this article studies the nondestructive detection method of insulator internal defects. First, the spectrum signal of the THz wave is obtained by continuous wavelet transform. Then, for THz time-domain and frequency-domain data, autoencoders incorporating a soft attention mechanism and a channel-spatial attention mechanism are used to automatically extract features, and time–frequency domain cognition is spliced to form fusion features. Finally, a semisupervised ladder network classification model is constructed to train the algorithm efficiently and classify reliably when it is difficult to obtain labels of defective samples. Compared with other networks oriented to 1-D and 2-D data that are trained in the common supervised way, the method in this article has a better performance in classification accuracy and recall rate, which is helpful to improve the detection effect of internal defects of insulation equipment based on the THz wave.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初a完成签到,获得积分10
刚刚
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
悄悄是心上的肖肖完成签到 ,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
欣慰煎蛋应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
蒋杰应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
蒋杰应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
1秒前
zy完成签到 ,获得积分10
2秒前
黎明完成签到,获得积分10
2秒前
梅比乌斯博士救救我完成签到,获得积分10
3秒前
心灵美凝竹完成签到 ,获得积分10
4秒前
jackiexin完成签到,获得积分10
5秒前
纯真冰露完成签到,获得积分10
6秒前
高大绝义完成签到,获得积分10
6秒前
6秒前
CandyJump完成签到,获得积分10
7秒前
Yang完成签到,获得积分10
7秒前
老迟到的访文完成签到,获得积分10
7秒前
上天的朱完成签到 ,获得积分10
9秒前
LL关注了科研通微信公众号
11秒前
萧瑟秋风今又是完成签到 ,获得积分10
11秒前
ccm应助LILI采纳,获得10
11秒前
温眼张完成签到,获得积分10
11秒前
Derek完成签到,获得积分0
12秒前
12秒前
yolo完成签到,获得积分10
13秒前
大模型应助Nice2cu采纳,获得10
13秒前
zero完成签到,获得积分10
13秒前
happiness完成签到 ,获得积分10
14秒前
Ouou完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401972
求助须知:如何正确求助?哪些是违规求助? 4520630
关于积分的说明 14080343
捐赠科研通 4434071
什么是DOI,文献DOI怎么找? 2434371
邀请新用户注册赠送积分活动 1426592
关于科研通互助平台的介绍 1405338