THz Wave Defect Detection Technology Based on Attention Autoencoder and Semisupervised Ladder Network

计算机科学 自编码 人工智能 特征提取 模式识别(心理学) 太赫兹辐射 小波变换 小波 无损检测 频域 信号(编程语言) 时域 人工神经网络 计算机视觉 材料科学 物理 光电子学 量子力学 程序设计语言
作者
Zhonghao Zhang,Da‐Wei Ding,Liming Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8961-8972 被引量:1
标识
DOI:10.1109/jsen.2023.3246040
摘要

Insulation equipment plays an important role in mechanical support and electrical insulation in the power grid. When there are defects in the insulation equipment, the safe operation of the power grid will be seriously threatened. Non-destructive testing (NDT) is an important means to timely find hidden dangers. In view of the low reliability of defect recognition in the case of insufficient sample marks, based on autoencoder feature extraction and semisupervised networks, combined with a terahertz (THz) wave detection device, this article studies the nondestructive detection method of insulator internal defects. First, the spectrum signal of the THz wave is obtained by continuous wavelet transform. Then, for THz time-domain and frequency-domain data, autoencoders incorporating a soft attention mechanism and a channel-spatial attention mechanism are used to automatically extract features, and time–frequency domain cognition is spliced to form fusion features. Finally, a semisupervised ladder network classification model is constructed to train the algorithm efficiently and classify reliably when it is difficult to obtain labels of defective samples. Compared with other networks oriented to 1-D and 2-D data that are trained in the common supervised way, the method in this article has a better performance in classification accuracy and recall rate, which is helpful to improve the detection effect of internal defects of insulation equipment based on the THz wave.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Dr_Zhu完成签到,获得积分10
1秒前
Shaohao发布了新的文献求助10
1秒前
郭郭完成签到,获得积分10
1秒前
2秒前
虫子盐发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
a623662980发布了新的文献求助10
4秒前
4秒前
汉堡包应助朱猪侠采纳,获得10
4秒前
归尘应助呐呐采纳,获得30
4秒前
七七完成签到,获得积分20
5秒前
领导范儿应助自然如冰采纳,获得10
5秒前
文静健柏发布了新的文献求助30
6秒前
6秒前
zzmp完成签到,获得积分10
6秒前
FashionBoy应助DZQ采纳,获得10
7秒前
7秒前
8秒前
yeeming给李娜的求助进行了留言
8秒前
陈cj完成签到,获得积分10
8秒前
godccc发布了新的文献求助10
8秒前
防弹小航发布了新的文献求助10
9秒前
沉静盼易完成签到,获得积分10
9秒前
安详的三颜完成签到,获得积分10
9秒前
CJY发布了新的文献求助10
9秒前
赘婿应助精明的灵寒采纳,获得10
9秒前
Ava应助水上书采纳,获得10
10秒前
Rae完成签到 ,获得积分10
10秒前
神勇雨双完成签到,获得积分10
10秒前
zzzllove发布了新的文献求助10
10秒前
11秒前
haochi发布了新的文献求助10
11秒前
充电宝应助叶婧馨采纳,获得10
11秒前
充电宝应助Yuan88采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439470
求助须知:如何正确求助?哪些是违规求助? 4550649
关于积分的说明 14225656
捐赠科研通 4471747
什么是DOI,文献DOI怎么找? 2450474
邀请新用户注册赠送积分活动 1441297
关于科研通互助平台的介绍 1417901