THz Wave Defect Detection Technology Based on Attention Autoencoder and Semisupervised Ladder Network

计算机科学 自编码 人工智能 特征提取 模式识别(心理学) 太赫兹辐射 小波变换 小波 无损检测 频域 信号(编程语言) 时域 人工神经网络 计算机视觉 材料科学 物理 光电子学 量子力学 程序设计语言
作者
Zhonghao Zhang,Da‐Wei Ding,Liming Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (8): 8961-8972 被引量:1
标识
DOI:10.1109/jsen.2023.3246040
摘要

Insulation equipment plays an important role in mechanical support and electrical insulation in the power grid. When there are defects in the insulation equipment, the safe operation of the power grid will be seriously threatened. Non-destructive testing (NDT) is an important means to timely find hidden dangers. In view of the low reliability of defect recognition in the case of insufficient sample marks, based on autoencoder feature extraction and semisupervised networks, combined with a terahertz (THz) wave detection device, this article studies the nondestructive detection method of insulator internal defects. First, the spectrum signal of the THz wave is obtained by continuous wavelet transform. Then, for THz time-domain and frequency-domain data, autoencoders incorporating a soft attention mechanism and a channel-spatial attention mechanism are used to automatically extract features, and time–frequency domain cognition is spliced to form fusion features. Finally, a semisupervised ladder network classification model is constructed to train the algorithm efficiently and classify reliably when it is difficult to obtain labels of defective samples. Compared with other networks oriented to 1-D and 2-D data that are trained in the common supervised way, the method in this article has a better performance in classification accuracy and recall rate, which is helpful to improve the detection effect of internal defects of insulation equipment based on the THz wave.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
乐乐应助Dr.Liujun采纳,获得10
2秒前
伟大的鲁路皇完成签到,获得积分10
2秒前
生动茹妖完成签到,获得积分10
2秒前
完美世界应助南瓜气气采纳,获得30
3秒前
3秒前
4秒前
jinyue完成签到,获得积分10
6秒前
hh发布了新的文献求助10
7秒前
9秒前
lc完成签到,获得积分10
11秒前
14秒前
李健的小迷弟应助anna采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
17秒前
嘀嘀咕咕发布了新的文献求助10
17秒前
大观天下完成签到,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
19秒前
兴奋千兰发布了新的文献求助10
20秒前
有机发布了新的文献求助10
21秒前
yukang发布了新的文献求助10
21秒前
23秒前
大观天下发布了新的文献求助30
24秒前
24秒前
26秒前
27秒前
小盘子完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073