核糖体生物发生
生物
细胞生物学
翻译(生物学)
应力颗粒
核糖核酸
核糖体
非翻译区
遗传学
信使核糖核酸
基因
作者
Yu Fan,Mengjie Li,H. J. Yang,Shuangjie Li,Xiaoyan Hao,Jia-di Li,Yun-chao Wang,Mibo Tang,Chan Zhang,Jingjing Shi,Dongrui Ma,Meng-Nan Guo,Fen Liu,Si Shen,Dabao Yao,Chun‐yan Zuo,Chengyuan Mao,Zhengwei Hu,Shuo Zhang,Zhihua Yang
出处
期刊:Brain
[Oxford University Press]
日期:2023-02-24
卷期号:146 (8): 3373-3391
被引量:11
标识
DOI:10.1093/brain/awad058
摘要
Abstract GGC repeat expansion in the 5′ untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear. Here, we used NIID patient-specific induced pluripotent stem cell (iPSC)-derived 3D cerebral organoids (3DCOs) and cellular models to investigate the pathophysiological mechanisms of NOTCH2NLC GGC repeat expansion. IPSC-derived 3DCOs and cellular models showed the deposition of polyG-containing intranuclear inclusions. The NOTCH2NLC GGC repeats could induce the upregulation of autophagic flux, enhance integrated stress response and activate EIF2α phosphorylation. Bulk RNA sequencing for iPSC-derived neurons and single-cell RNA sequencing (scRNA-seq) for iPSC-derived 3DCOs revealed that NOTCH2NLC GGC repeats may be associated with dysfunctions in ribosome biogenesis and translation. Moreover, NOTCH2NLC GGC repeats could induce the NPM1 nucleoplasm translocation, increase nucleolar stress, impair ribosome biogenesis and induce ribosomal RNA sequestration, suggesting dysfunction of membraneless organelles in the NIID cellular model. Dysfunctions in ribosome biogenesis and phosphorylated EIF2α and the resulting increase in the formation of G3BP1-positive stress granules may together lead to whole-cell translational inhibition, which may eventually cause cell death. Interestingly, scRNA-seq revealed that NOTCH2NLC GGC repeats may be associated with a significantly decreased proportion of immature neurons while 3DCOs were developing. Together, our results underscore the value of patient-specific iPSC-derived 3DCOs in investigating the mechanisms of polyG diseases, especially those caused by repeats in human-specific genes.
科研通智能强力驱动
Strongly Powered by AbleSci AI