Improved sparse low-rank model via periodic overlapping group shrinkage and truncated nuclear norm for rolling bearing fault diagnosis

算法 矩阵范数 计算机科学 秩(图论) 维数(图论) 降维 断层(地质) 模式识别(心理学) 数学 人工智能 物理 地质学 特征向量 组合数学 地震学 量子力学 纯数学
作者
Qian Zhang,Xinxin Li,Hanling Mao,Zhenfeng Huang,Yanan Xiao,Wenxian Chen,Jiangshu Xiang,Yiwen Bi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (6): 065009-065009 被引量:3
标识
DOI:10.1088/1361-6501/acbecf
摘要

Abstract The early faults of rolling bearings are the common causes of rotating machinery failures. Rolling bearings with local faults usually generate periodic shocks during operation, but the pulse information is easily masked by a large number of random shocks and noise. To effectively diagnose the early fault information of rolling bearings, a dual-dimensional sparse low-rank (DDSLR) model is proposed in this paper, which can simultaneously extract the sparsity within and across groups and periodic self-similarity of fault signal. In the DDSLR model, a newly developed dimension transformation operator is used to transform the fault signal between one-dimensional vector and low-rank matrix, and the periodic overlapping group shrinkage and truncated nuclear norm are used to improve the traditional sparse low-rank model. In addition, the setting rules of periodic prior and parameters in the DDSLR model are discussed, so that the DDSLR model has certain adaptive ability. Finally, the DDSLR model is proved to be a multi-convex optimization problem, and its solution algorithm is derived by using soft threshold operator and majorization-minimization algorithm under the framework of block coordinate descent method. The results of simulation analysis and experiments show that the proposed DDSLR model has higher fault signal estimation accuracy and better fault feature extraction performance than some classical sparse noise reduction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助11采纳,获得10
2秒前
Ava应助繁荣的映雁采纳,获得10
3秒前
容容完成签到,获得积分20
4秒前
janice116688完成签到,获得积分10
6秒前
搜集达人应助suleisusu采纳,获得10
7秒前
SYLH应助沉默的雪柳采纳,获得80
7秒前
sjr关闭了sjr文献求助
7秒前
Cheney完成签到,获得积分10
8秒前
蒜泥发布了新的文献求助10
9秒前
bkagyin应助十里桃花不徘徊采纳,获得10
10秒前
李健的小迷弟应助夹谷蕈采纳,获得10
11秒前
11秒前
沙雕荷包蛋完成签到,获得积分10
11秒前
maox1aoxin应助雪白寻绿采纳,获得30
12秒前
霸气秀发布了新的文献求助20
13秒前
14秒前
nuannuan应助森林木采纳,获得10
17秒前
18秒前
奋斗映寒完成签到,获得积分10
19秒前
19秒前
桐桐应助WJing采纳,获得30
21秒前
22秒前
22秒前
22秒前
科研土人应助奋斗映寒采纳,获得10
22秒前
希望天下0贩的0应助omkg采纳,获得10
23秒前
23秒前
阿信必发JACS完成签到,获得积分10
24秒前
现实的晓蓝完成签到,获得积分10
24秒前
霸气秀完成签到,获得积分10
26秒前
29秒前
Akim应助Jun采纳,获得10
31秒前
江峰应助儿学化学打断腿采纳,获得10
31秒前
31秒前
摸鱼咯完成签到 ,获得积分10
32秒前
32秒前
33秒前
33秒前
34秒前
十药九茯苓完成签到,获得积分10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465739
求助须知:如何正确求助?哪些是违规求助? 3058804
关于积分的说明 9063252
捐赠科研通 2749200
什么是DOI,文献DOI怎么找? 1508377
科研通“疑难数据库(出版商)”最低求助积分说明 696893
邀请新用户注册赠送积分活动 696585