Oysters, which are flavourful edible marine products, have been utilised to produce Maillard reaction products (MRPs), which contribute to saltiness enhancement. Here, the molecular weight distribution, free amino acids, and taste characteristics of MRPs were analysed, while ultraviolet light was used to observe the Maillard reaction. Both thermal degradation and cross-linking reactions occur during the Maillard reaction. When the Maillard reaction time was 90 min, the saltiness, umami, and richness of the MRPs peaked, however bitterness reached its lowest value. Moreover, at an MRP concentration of 1.5 mg/mL, salts were reduced by 35.71% in a 3 mg/mL sodium chloride solution without reducing saltiness, based on sensory evaluation. Glycation sites of the MRPs, which are crucial for saltiness enhancement and derived from a variety of protein sources, were determined using nano-HPLC-MS/MS analysis. Our study establishes the foundation for preparing salt-enhancing peptides, accelerating the popularisation of oyster-derived flavouring agents.