CRFormer: Cross-Resolution Transformer for segmentation of grape leaf diseases with context mining

计算机科学 分割 稳健性(进化) 人工智能 计算 数据挖掘 模式识别(心理学) 算法 生物化学 化学 基因
作者
Xinxin Zhang,Chaojun Cen,Fei Li,Meng Liu,Weisong Mu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:229: 120324-120324 被引量:15
标识
DOI:10.1016/j.eswa.2023.120324
摘要

In the smart agriculture community, automatic segmentation is an important basis for plant disease detection and identification. However, the complex background and texturally rich edge detail make it difficult to segment grape leaf disease. The existing methods seldom consider the in-depth understanding of the whole scene that is helpful for the precise segmentation of small diseased regions. To this end, we build three datasets and propose a tailored segmentation architecture referred to as the Cross-Resolution Transformer (CRFormer) for field grape leaf disease. Concretely, we introduce a large-kernel mining (LKM) attention operation to reshape the weight matrix, which can adaptively encode channel and spatial information for small disease areas with complex backgrounds. Furthermore, we design a multi-path feed-forward network (MPFFN) to further mine different scales of contextual information by applying convolutional pairs. Besides, CRFormer leverages a lightweight decoder to improve the ability of multi-scale information aggregation. Extensive experiments have demonstrated that CRFormer remarkably outperforms leading methods on the datasets we built, including Field-PV, Syn-PV, and Plant Village. Our CRFormer achieves 88.78% IoU with less computation than competitors on the Field-PV dataset. The ablation experiments investigated the effectiveness and robustness of the core proposed components in CRFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助xiongxianmei采纳,获得10
刚刚
所所应助妖哥采纳,获得10
2秒前
2秒前
孙二二发布了新的文献求助10
3秒前
科研通AI5应助swing采纳,获得10
5秒前
6秒前
缥缈以珊完成签到,获得积分10
7秒前
8秒前
科研通AI5应助okko采纳,获得10
11秒前
11秒前
12秒前
ban发布了新的文献求助30
13秒前
13秒前
无限的紫蓝完成签到,获得积分20
13秒前
妖哥发布了新的文献求助10
16秒前
17秒前
swing发布了新的文献求助10
18秒前
彭仲康发布了新的文献求助30
18秒前
18秒前
21秒前
afatinib完成签到,获得积分10
24秒前
吖吖完成签到,获得积分20
25秒前
25秒前
25秒前
cwm完成签到,获得积分10
27秒前
27秒前
Andy完成签到,获得积分10
27秒前
swing完成签到,获得积分20
29秒前
29秒前
31秒前
谷谷发布了新的文献求助10
31秒前
33秒前
赣南橙发布了新的文献求助30
33秒前
小蘑菇应助永远采纳,获得10
34秒前
骜111完成签到,获得积分10
35秒前
搜集达人应助演化的蛙鱼采纳,获得10
36秒前
在水一方应助yangyang采纳,获得10
37秒前
忘崽子小拳头完成签到,获得积分10
37秒前
38秒前
隐形曼青应助Russula_Chu采纳,获得30
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901