作者
Anushree Dugar,Andrew N. Hoofnagle,Amber P. Sanchez,David M. Ward,Jody Corey‐Bloom,Jonathan H. Cheng,Joachim H. Ix,Charles Ginsberg
摘要
Abstract Background 25-hydroxyvitamin D[25(OH)D] may be a poor marker of vitamin D status due to variability in levels of vitamin D binding protein (VDBP). The vitamin D metabolite ratio (VMR) is the ratio of 24,25-dihydroxyvitamin D[24,25(OH)2D3] to 25(OH)D3 and has been postulated to reflect vitamin D sufficiency independent of variability in VDBP. Therapeutic plasma exchange (TPE) is a procedure that removes plasma, including VDBP, and may lower bound vitamin D metabolite concentrations. Effects of TPE on the VMR are unknown. Methods We measured 25(OH)D, free 25(OH)D, 1,25-dihydroxyvitamin D[1,25(OH)2D], 24,25(OH)2D3, and VDBP in persons undergoing TPE, before and after treatment. We used paired t-tests to assess changes in these biomarkers during a TPE procedure. Results Study participants (n = 45) had a mean age of 55 ± 16 years; 67% were female; and 76% were white. Compared to pretreatment concentrations, TPE caused a significant decrease in total VDBP by 65% (95%CI 60,70%), as well as all the vitamin D metabolites—25(OH)D by 66% (60%,74%), free 25(OH)D by 31% (24%,39%), 24,25(OH)2D3 by 66% (55%,78%) and 1,25(OH)2D by 68% (60%,76%). In contrast, there was no significant change in the VMR before and after a single TPE treatment, with an observed mean 7% (−3%, 17%) change in VMR. Conclusions Changes in VDBP concentration across TPE parallel changes in 25(OH)D, 1,25(OH)2D, and 24,25(OH)2D3, suggesting that concentrations of these metabolites reflect underlying VDBP concentrations. The VMR is stable across a TPE session despite a 65% reduction in VDBP. These findings suggest that the VMR is a marker of vitamin D status independent of VDBP levels.