亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Framework Development for Patient-Specific Compliant Aortic Dissection Phantom Model Fabrication: Magnetic Resonance Imaging Validation and Deep-Learning Segmentation

成像体模 主动脉夹层 分割 磁共振成像 深度学习 生物医学工程 计算机科学 人工智能 解剖(医学) 主动脉 材料科学 医学 放射科 外科
作者
Arian Aghilinejad,Heng Wei,Coşkun Bilgi,Alberto García Paredes,Alexander D. DiBartolomeo,Gregory A. Magee,Niema M. Pahlevan
出处
期刊:Journal of biomechanical engineering [ASM International]
卷期号:145 (9) 被引量:5
标识
DOI:10.1115/1.4062539
摘要

Type B aortic dissection is a life-threatening medical emergency that can result in rupture of the aorta. Due to the complexity of patient-specific characteristics, only limited information on flow patterns in dissected aortas has been reported in the literature. Leveraging the medical imaging data for patient-specific in vitro modeling can complement the hemodynamic understanding of aortic dissections. We propose a new approach toward fully automated patient-specific type B aortic dissection model fabrication. Our framework uses a novel deep-learning-based segmentation for negative mold manufacturing. Deep-learning architectures were trained on a dataset of 15 unique computed tomography scans of dissection subjects and were blind-tested on 4 sets of scans, which were targeted for fabrication. Following segmentation, the three-dimensional models were created and printed using polyvinyl alcohol. These models were then coated with latex to create compliant patient-specific phantom models. The magnetic resonance imaging (MRI) structural images demonstrate the ability of the introduced manufacturing technique for creating intimal septum walls and tears based on patient-specific anatomy. The in vitro experiments show the fabricated phantoms generate physiologically-accurate pressure results. The deep-learning models also show high similarity metrics between manual segmentation and autosegmentation where Dice metric is as high as 0.86. The proposed deep-learning-based negative mold manufacturing method facilitates an inexpensive, reproducible, and physiologically-accurate patient-specific phantom model fabrication suitable for aortic dissection flow modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
48秒前
1分钟前
lixuebin完成签到 ,获得积分10
1分钟前
李健应助欣喜翠丝采纳,获得10
1分钟前
2分钟前
欣喜翠丝完成签到,获得积分10
2分钟前
欣喜翠丝发布了新的文献求助10
2分钟前
Hello应助Moislad采纳,获得10
2分钟前
2分钟前
高大楼房完成签到,获得积分10
3分钟前
852应助高大楼房采纳,获得10
3分钟前
3分钟前
高大楼房发布了新的文献求助10
3分钟前
3分钟前
3分钟前
NexusExplorer应助糖糖采纳,获得10
4分钟前
4分钟前
明理的延恶完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
hulala发布了新的文献求助10
5分钟前
小马甲应助皮皮蟹采纳,获得10
5分钟前
5分钟前
零矩阵完成签到,获得积分10
5分钟前
皮皮蟹发布了新的文献求助10
5分钟前
hgsgeospan完成签到,获得积分10
5分钟前
6分钟前
hgs完成签到,获得积分10
6分钟前
Moislad发布了新的文献求助10
6分钟前
6分钟前
万能图书馆应助涛哥采纳,获得10
6分钟前
博ge完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
完美世界应助科研通管家采纳,获得30
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
涛哥发布了新的文献求助10
6分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733391
求助须知:如何正确求助?哪些是违规求助? 3277605
关于积分的说明 10003426
捐赠科研通 2993596
什么是DOI,文献DOI怎么找? 1642768
邀请新用户注册赠送积分活动 780623
科研通“疑难数据库(出版商)”最低求助积分说明 748912