Modeling of microbial fuel cell power generation using machine learning-based super learner algorithms

平均绝对百分比误差 均方误差 算法 微生物燃料电池 响应面法 支持向量机 发电 稳健性(进化) 决定系数 近似误差 计算机科学 统计 数学 机器学习 人工智能 功率(物理) 化学 物理 基因 量子力学 生物化学
作者
S. M. Zakir Hossain,Nahid Sultana,Shaker Haji,Shaikha Talal Mufeez,Sara Esam Janahi,Nadia Ahmed
出处
期刊:Fuel [Elsevier BV]
卷期号:349: 128646-128646 被引量:1
标识
DOI:10.1016/j.fuel.2023.128646
摘要

Electricity generation from microbial fuel cells (MFCs) is a potential environment-friendly technology. This study provides Bayesian Algorithm (BA) based Support Vector Regression (SVR) and Boosted Regression Tree (BRT) as prospective super learner modeling tools (BA-SVR, BA-BRT) for predictions of electricity production from MFCs. The membrane thickness, external resistance, and anode area were considered independent variables, while power generation was taken as a response variable. The key novelties of this study include (i) hybridization of BA with SVR and BRT (separately) for forecasting power generation from fuel cells for the first time, (ii) performance comparison of the developed models (BA-SVR and BA-BRT) with the existing Response Surface Methodology (RSM) based on the coefficient of determination (R2), relative error (RE), mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and computing efficiency, and the (iii) analysis of the models’ robustness by utilizing Gaussian white noise. Based on the performance indicators, the proposed super leaner models showed excellent performance compared to the existing M.J. Salar-García et al. RSM model. The BA-SVR model provided the lowest errors (MAE of 2.94, RSME of 7.2926, MAPE of 13.8341) with the highest R2 of 0.9981, compared to the BA-BRT and RSM models. The proposed BA-SVR model showed superior performance to the RSM and BA-BRT models in predicting the MFCs’ power generation, with a performance improvement of more than 90% regarding MAPE, as an example. The future prediction and high robustness of the proposed super learner model would ensure quick estimation for maximization of electricity generation that may lead to reducing massive lab trials and saving resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助岁岁平安采纳,获得10
刚刚
学术之神庇佑的一完成签到,获得积分10
1秒前
1秒前
SYLH应助东西南北采纳,获得10
1秒前
HealthyCH完成签到,获得积分10
2秒前
4466完成签到,获得积分10
3秒前
4秒前
天天快乐应助悄悄采纳,获得10
5秒前
卫东要读博完成签到 ,获得积分10
5秒前
6秒前
6秒前
一月平芜发布了新的文献求助10
7秒前
塵埃完成签到,获得积分10
8秒前
yj17ying完成签到,获得积分10
8秒前
9秒前
pennyZMG完成签到,获得积分10
10秒前
xia发布了新的文献求助10
10秒前
合适一斩发布了新的文献求助30
11秒前
13秒前
13秒前
14秒前
14秒前
15秒前
Leslie完成签到,获得积分10
17秒前
lyjj023发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
20秒前
悄悄发布了新的文献求助10
20秒前
lilian发布了新的文献求助30
20秒前
Leslie发布了新的文献求助10
21秒前
天天快乐应助pigff采纳,获得10
21秒前
坚定小熊猫完成签到,获得积分20
21秒前
21秒前
shinn发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
可爱的函函应助合适一斩采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967654
求助须知:如何正确求助?哪些是违规求助? 3512812
关于积分的说明 11165110
捐赠科研通 3247884
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528