Modeling of microbial fuel cell power generation using machine learning-based super learner algorithms

平均绝对百分比误差 均方误差 算法 微生物燃料电池 响应面法 支持向量机 发电 稳健性(进化) 决定系数 近似误差 计算机科学 统计 数学 机器学习 人工智能 功率(物理) 化学 物理 基因 量子力学 生物化学
作者
S. M. Zakir Hossain,Nahid Sultana,Shaker Haji,Shaikha Talal Mufeez,Sara Esam Janahi,Nadia Ahmed
出处
期刊:Fuel [Elsevier]
卷期号:349: 128646-128646 被引量:1
标识
DOI:10.1016/j.fuel.2023.128646
摘要

Electricity generation from microbial fuel cells (MFCs) is a potential environment-friendly technology. This study provides Bayesian Algorithm (BA) based Support Vector Regression (SVR) and Boosted Regression Tree (BRT) as prospective super learner modeling tools (BA-SVR, BA-BRT) for predictions of electricity production from MFCs. The membrane thickness, external resistance, and anode area were considered independent variables, while power generation was taken as a response variable. The key novelties of this study include (i) hybridization of BA with SVR and BRT (separately) for forecasting power generation from fuel cells for the first time, (ii) performance comparison of the developed models (BA-SVR and BA-BRT) with the existing Response Surface Methodology (RSM) based on the coefficient of determination (R2), relative error (RE), mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and computing efficiency, and the (iii) analysis of the models’ robustness by utilizing Gaussian white noise. Based on the performance indicators, the proposed super leaner models showed excellent performance compared to the existing M.J. Salar-García et al. RSM model. The BA-SVR model provided the lowest errors (MAE of 2.94, RSME of 7.2926, MAPE of 13.8341) with the highest R2 of 0.9981, compared to the BA-BRT and RSM models. The proposed BA-SVR model showed superior performance to the RSM and BA-BRT models in predicting the MFCs’ power generation, with a performance improvement of more than 90% regarding MAPE, as an example. The future prediction and high robustness of the proposed super learner model would ensure quick estimation for maximization of electricity generation that may lead to reducing massive lab trials and saving resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助健忘的妙松采纳,获得30
刚刚
郭生发布了新的文献求助10
1秒前
keyanlv发布了新的文献求助10
1秒前
lilili发布了新的文献求助10
1秒前
NexusExplorer应助wrrop采纳,获得10
1秒前
Zx_1993应助Innocent_Story采纳,获得10
1秒前
哎哟发布了新的文献求助10
1秒前
weiliu发布了新的文献求助10
2秒前
ZWY完成签到,获得积分10
2秒前
wanci应助猪猪hero采纳,获得10
2秒前
27小天使应助林子采纳,获得30
2秒前
宓天问完成签到,获得积分10
2秒前
3秒前
顺心稚晴完成签到 ,获得积分10
3秒前
David发布了新的文献求助10
3秒前
zzz完成签到,获得积分10
3秒前
喜欢朝雪发布了新的文献求助10
4秒前
4秒前
hometown完成签到,获得积分10
5秒前
张晨完成签到 ,获得积分10
5秒前
orixero应助踏实映天采纳,获得10
5秒前
5秒前
liangzhao完成签到,获得积分10
5秒前
wzyshzu完成签到,获得积分10
5秒前
6秒前
自由念露完成签到 ,获得积分10
6秒前
6秒前
小乐儿~完成签到,获得积分10
7秒前
香蕉觅云应助ZWY采纳,获得10
7秒前
李健的小迷弟应助22采纳,获得10
8秒前
8秒前
8秒前
qinmoming完成签到,获得积分10
9秒前
小胖饼饼发布了新的文献求助10
9秒前
9秒前
Flin发布了新的文献求助10
9秒前
10秒前
hui发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710