Modeling of microbial fuel cell power generation using machine learning-based super learner algorithms

平均绝对百分比误差 均方误差 算法 微生物燃料电池 响应面法 支持向量机 发电 稳健性(进化) 决定系数 近似误差 计算机科学 统计 数学 机器学习 人工智能 功率(物理) 化学 物理 基因 量子力学 生物化学
作者
S. M. Zakir Hossain,Nahid Sultana,Shaker Haji,Shaikha Talal Mufeez,Sara Esam Janahi,Nadia Ahmed
出处
期刊:Fuel [Elsevier]
卷期号:349: 128646-128646 被引量:1
标识
DOI:10.1016/j.fuel.2023.128646
摘要

Electricity generation from microbial fuel cells (MFCs) is a potential environment-friendly technology. This study provides Bayesian Algorithm (BA) based Support Vector Regression (SVR) and Boosted Regression Tree (BRT) as prospective super learner modeling tools (BA-SVR, BA-BRT) for predictions of electricity production from MFCs. The membrane thickness, external resistance, and anode area were considered independent variables, while power generation was taken as a response variable. The key novelties of this study include (i) hybridization of BA with SVR and BRT (separately) for forecasting power generation from fuel cells for the first time, (ii) performance comparison of the developed models (BA-SVR and BA-BRT) with the existing Response Surface Methodology (RSM) based on the coefficient of determination (R2), relative error (RE), mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and computing efficiency, and the (iii) analysis of the models’ robustness by utilizing Gaussian white noise. Based on the performance indicators, the proposed super leaner models showed excellent performance compared to the existing M.J. Salar-García et al. RSM model. The BA-SVR model provided the lowest errors (MAE of 2.94, RSME of 7.2926, MAPE of 13.8341) with the highest R2 of 0.9981, compared to the BA-BRT and RSM models. The proposed BA-SVR model showed superior performance to the RSM and BA-BRT models in predicting the MFCs’ power generation, with a performance improvement of more than 90% regarding MAPE, as an example. The future prediction and high robustness of the proposed super learner model would ensure quick estimation for maximization of electricity generation that may lead to reducing massive lab trials and saving resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助韭黄采纳,获得10
刚刚
gnufgg完成签到,获得积分10
刚刚
科研通AI5应助tabor采纳,获得10
刚刚
刚刚
互助互惠互通完成签到,获得积分10
刚刚
脑洞疼应助ziyiziyi采纳,获得10
1秒前
1秒前
1秒前
屹舟完成签到,获得积分10
2秒前
zjudxn关注了科研通微信公众号
2秒前
3秒前
3秒前
科研通AI5应助hu970采纳,获得10
3秒前
3秒前
艺玲发布了新的文献求助10
4秒前
咚咚咚完成签到,获得积分10
4秒前
芋圆Z.完成签到,获得积分10
4秒前
atad2发布了新的文献求助10
4秒前
li梨完成签到,获得积分10
4秒前
5秒前
晏小敏完成签到,获得积分10
5秒前
爆米花应助风中寄云采纳,获得10
6秒前
屹舟发布了新的文献求助10
6秒前
Dou完成签到,获得积分10
6秒前
白泯完成签到,获得积分10
7秒前
1ssd发布了新的文献求助10
7秒前
667发布了新的文献求助10
7秒前
小二郎应助辰柒采纳,获得10
8秒前
9秒前
9秒前
clear完成签到,获得积分20
9秒前
9秒前
orixero应助congguitar采纳,获得10
9秒前
Evan完成签到,获得积分10
9秒前
YANG发布了新的文献求助10
10秒前
10秒前
123发布了新的文献求助10
10秒前
sunzhiyu233发布了新的文献求助10
11秒前
Raul完成签到 ,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759