亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling of microbial fuel cell power generation using machine learning-based super learner algorithms

平均绝对百分比误差 均方误差 算法 微生物燃料电池 响应面法 支持向量机 发电 稳健性(进化) 决定系数 近似误差 计算机科学 统计 数学 机器学习 人工智能 功率(物理) 化学 物理 基因 量子力学 生物化学
作者
S. M. Zakir Hossain,Nahid Sultana,Shaker Haji,Shaikha Talal Mufeez,Sara Esam Janahi,Nadia Ahmed
出处
期刊:Fuel [Elsevier]
卷期号:349: 128646-128646 被引量:1
标识
DOI:10.1016/j.fuel.2023.128646
摘要

Electricity generation from microbial fuel cells (MFCs) is a potential environment-friendly technology. This study provides Bayesian Algorithm (BA) based Support Vector Regression (SVR) and Boosted Regression Tree (BRT) as prospective super learner modeling tools (BA-SVR, BA-BRT) for predictions of electricity production from MFCs. The membrane thickness, external resistance, and anode area were considered independent variables, while power generation was taken as a response variable. The key novelties of this study include (i) hybridization of BA with SVR and BRT (separately) for forecasting power generation from fuel cells for the first time, (ii) performance comparison of the developed models (BA-SVR and BA-BRT) with the existing Response Surface Methodology (RSM) based on the coefficient of determination (R2), relative error (RE), mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and computing efficiency, and the (iii) analysis of the models’ robustness by utilizing Gaussian white noise. Based on the performance indicators, the proposed super leaner models showed excellent performance compared to the existing M.J. Salar-García et al. RSM model. The BA-SVR model provided the lowest errors (MAE of 2.94, RSME of 7.2926, MAPE of 13.8341) with the highest R2 of 0.9981, compared to the BA-BRT and RSM models. The proposed BA-SVR model showed superior performance to the RSM and BA-BRT models in predicting the MFCs’ power generation, with a performance improvement of more than 90% regarding MAPE, as an example. The future prediction and high robustness of the proposed super learner model would ensure quick estimation for maximization of electricity generation that may lead to reducing massive lab trials and saving resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄婷萱完成签到,获得积分20
刚刚
5秒前
今后应助freedom采纳,获得10
12秒前
snail完成签到,获得积分10
13秒前
25秒前
27秒前
淡淡十三发布了新的文献求助10
29秒前
CipherSage应助淡淡十三采纳,获得10
33秒前
35秒前
半夏完成签到 ,获得积分10
37秒前
46秒前
47秒前
49秒前
DBP87弹完成签到 ,获得积分10
51秒前
伊娃发布了新的文献求助10
53秒前
54秒前
科研花完成签到 ,获得积分10
1分钟前
伊娃完成签到 ,获得积分10
1分钟前
自觉汽车完成签到,获得积分10
1分钟前
1分钟前
ESTER完成签到 ,获得积分10
1分钟前
1分钟前
王者归来完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
深情安青应助默默襄采纳,获得10
1分钟前
1分钟前
2分钟前
默默襄发布了新的文献求助10
2分钟前
breeze完成签到,获得积分10
2分钟前
怪僻完成签到,获得积分10
2分钟前
2分钟前
小二郎应助llpj采纳,获得10
2分钟前
成就的笑南完成签到 ,获得积分10
2分钟前
2分钟前
读研霹雳完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302033
求助须知:如何正确求助?哪些是违规求助? 4449329
关于积分的说明 13848232
捐赠科研通 4335497
什么是DOI,文献DOI怎么找? 2380331
邀请新用户注册赠送积分活动 1375325
关于科研通互助平台的介绍 1341472