Unveiling the Direct Electron Transfer Regime of Peracetic Acid Activation: Quantitative Structure–Activity Relationship Analysis of Carbon Nanotube Catalysis

过氧乙酸 碳纳米管 催化作用 电子转移 化学 化学工程 合理设计 碳纤维 纳米技术 材料科学 过氧化氢 光化学 有机化学 复合材料 复合数 工程类
作者
Dezhen Kong,Yumeng Zhao,Hongdi Guo,Mei Han,Xinru Fan,Jinkuo Li,Xu He,Jun Ma
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:3 (7): 1030-1041 被引量:15
标识
DOI:10.1021/acsestengg.3c00042
摘要

The demands for high-efficient and green activation of peracetic acid (PAA) have triggered research in exploring carbon catalysis. Nevertheless, the efforts in designing reaction-oriented and high-performance carbon catalysts are largely impeded by an ambiguous understanding of the fundamental carbon structure–PAA activation performance relationship. Herein, we investigated the quantitative structure–activity relationship (QSAR) of carbon nanotubes (CNTs) for PAA activation and micropollutant (MP) removal, by tuning the physiochemical properties of CNT via thermal annealing. The CNT/PAA system was dominated by the nonradical direct electron transfer (DET) oxidation pathway, showing high MP removal rates under complex water matrices. By conducting QSAR analysis, improved catalytic efficacy of the surface-regulated CNTs was attributed to the reinforced DET via the elevated oxidative potential of the CNT–PAA complex and the enhanced electrical conductivity of CNT. Furthermore, the larger specific surface area and lower oxygen content of CNT gave rise to the elevated oxidative potential of the CNT–PAA complex, while the electrical conductivity of CNT was positively correlated with the graphitization degree of CNT. Overall, this work sheds light on the influence cascade of the physicochemical properties of CNT for MP removal and PAA activation, providing guidelines for the fit-for-purpose design of the DET-mediated carbon catalysts for PAA oxidation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
寒冷的奇异果完成签到,获得积分10
1秒前
hziyu发布了新的文献求助10
2秒前
2秒前
野性的南蕾完成签到,获得积分10
2秒前
毛毛哦啊发布了新的文献求助10
2秒前
zzzzzk发布了新的文献求助10
2秒前
2秒前
lalala发布了新的文献求助10
3秒前
三里墩头应助oldlee采纳,获得20
3秒前
3秒前
iNk应助西安小小朱采纳,获得10
3秒前
CodeCraft应助西安小小朱采纳,获得10
3秒前
无花果应助爱学习的小迟采纳,获得10
4秒前
哭泣的映寒完成签到 ,获得积分10
4秒前
xls完成签到,获得积分10
4秒前
4秒前
故意的傲玉应助圈圈采纳,获得10
4秒前
5秒前
522完成签到,获得积分10
5秒前
5秒前
kbj发布了新的文献求助10
5秒前
6秒前
老西瓜发布了新的文献求助10
6秒前
人各有痣完成签到,获得积分10
6秒前
后知后觉发布了新的文献求助10
6秒前
xiaoxiao发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
英姑应助哈哈呀采纳,获得10
8秒前
8秒前
hurry完成签到,获得积分10
8秒前
Hungrylunch应助陈玉婷采纳,获得20
8秒前
领导范儿应助hu970采纳,获得10
9秒前
new_vision发布了新的文献求助10
9秒前
拼搏翠桃完成签到,获得积分10
10秒前
糖糖科研顺利呀完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672