清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Online map-matching assisted by object-based classification of driving scenario

水准点(测量) 匹配(统计) 计算机科学 对象(语法) 地图匹配 人工智能 钥匙(锁) 数据挖掘 区间(图论) 模式识别(心理学) 数学 地理 全球定位系统 统计 组合数学 电信 计算机安全 大地测量学
作者
Hangbin Wu,Shengke Huang,Changhong Fu,Shengyuan Xu,Junhua Wang,Weiping Huang,Chun Liu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:: 1-36
标识
DOI:10.1080/13658816.2023.2206877
摘要

Different types of roads in complex road networks may run side-by-side or across in 2D or 3D spaces, which causes mismatched segments using existing online map-matching algorithms. A driving scenario that represents the driving environment can inform map-matching algorithms. Images from vehicle cameras contain extensive information about driving scenarios, such as surrounding key objects. This research utilized vehicle images and developed an object-based method to classify driving scenarios (Object-Based Driving-Scenario Classification: OBDSC) to calculate the probabilities of the current image in predefined types of driving scenarios. We implemented an online map-matching algorithm with the OBDSC method (OMM-OBDSC) to obtain optimal matching segments. The algorithm was tested on nine trajectories and OpenStreetMap data in Shanghai and compared with five benchmark algorithms in terms of the match rate, recall and accuracy. The OBDSC method is also applied to the benchmark algorithms to verify the effectiveness of map matching. The results show that our algorithm outperforms the benchmark algorithms with both the original interval and downsampled intervals (96.6%, 96.5%, 93.7% on average with 1–20 s intervals for the three metrics, respectively). The average match rate has improved by 8.9% for all benchmark algorithms after the addition of the OBDSC method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
6秒前
苹果完成签到 ,获得积分10
8秒前
23秒前
郑琦敏钰完成签到 ,获得积分10
25秒前
27秒前
立行完成签到 ,获得积分10
29秒前
36秒前
39秒前
XD824发布了新的文献求助10
40秒前
优雅的WAN完成签到 ,获得积分10
52秒前
53秒前
热情的橙汁完成签到,获得积分10
57秒前
59秒前
个性的紫菜应助hugeyoung采纳,获得30
59秒前
靓丽宛亦完成签到 ,获得积分10
1分钟前
hugeyoung完成签到,获得积分10
1分钟前
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Wen完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
LMW应助lee采纳,获得10
2分钟前
XD824发布了新的文献求助10
2分钟前
sfjww发布了新的文献求助30
2分钟前
中恐完成签到,获得积分0
2分钟前
2分钟前
xun应助lee采纳,获得30
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
3分钟前
Ava应助如沐春风采纳,获得10
3分钟前
ffff完成签到,获得积分10
3分钟前
3分钟前
3分钟前
如沐春风完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098