Online map-matching assisted by object-based classification of driving scenario

水准点(测量) 匹配(统计) 计算机科学 对象(语法) 地图匹配 人工智能 钥匙(锁) 数据挖掘 区间(图论) 模式识别(心理学) 数学 地理 全球定位系统 统计 组合数学 电信 计算机安全 大地测量学
作者
Hangbin Wu,Shengke Huang,Changhong Fu,Shengyuan Xu,Junhua Wang,Weiping Huang,Chun Liu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:: 1-36
标识
DOI:10.1080/13658816.2023.2206877
摘要

Different types of roads in complex road networks may run side-by-side or across in 2D or 3D spaces, which causes mismatched segments using existing online map-matching algorithms. A driving scenario that represents the driving environment can inform map-matching algorithms. Images from vehicle cameras contain extensive information about driving scenarios, such as surrounding key objects. This research utilized vehicle images and developed an object-based method to classify driving scenarios (Object-Based Driving-Scenario Classification: OBDSC) to calculate the probabilities of the current image in predefined types of driving scenarios. We implemented an online map-matching algorithm with the OBDSC method (OMM-OBDSC) to obtain optimal matching segments. The algorithm was tested on nine trajectories and OpenStreetMap data in Shanghai and compared with five benchmark algorithms in terms of the match rate, recall and accuracy. The OBDSC method is also applied to the benchmark algorithms to verify the effectiveness of map matching. The results show that our algorithm outperforms the benchmark algorithms with both the original interval and downsampled intervals (96.6%, 96.5%, 93.7% on average with 1–20 s intervals for the three metrics, respectively). The average match rate has improved by 8.9% for all benchmark algorithms after the addition of the OBDSC method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上秋尽完成签到,获得积分10
刚刚
刚刚
刚刚
太阳发布了新的文献求助10
刚刚
gggggggbao完成签到,获得积分10
1秒前
加贺发布了新的文献求助10
1秒前
2秒前
旷意发布了新的文献求助10
2秒前
Lexine发布了新的文献求助10
3秒前
3秒前
jeil完成签到,获得积分10
4秒前
鱼鱼子999发布了新的文献求助10
4秒前
AamirAli完成签到,获得积分10
5秒前
在水一方应助太阳采纳,获得10
5秒前
田様应助gggggggbao采纳,获得10
5秒前
6秒前
简单的鲜花完成签到,获得积分10
6秒前
科研通AI6应助lily采纳,获得10
6秒前
杨锐完成签到,获得积分10
7秒前
风趣从霜完成签到,获得积分10
7秒前
从容的完成签到 ,获得积分10
8秒前
9秒前
9秒前
ssy发布了新的文献求助10
9秒前
感动城完成签到,获得积分10
10秒前
儒雅的小懒虫完成签到 ,获得积分10
12秒前
mika910完成签到 ,获得积分10
12秒前
12秒前
13秒前
ybouo完成签到,获得积分10
14秒前
122456完成签到,获得积分10
14秒前
华国锋应助加贺采纳,获得20
15秒前
Jave发布了新的文献求助10
15秒前
ssy完成签到,获得积分10
16秒前
小蘑菇应助Tao采纳,获得10
16秒前
田様应助可靠雪雪采纳,获得10
18秒前
领导范儿应助嘻嘻采纳,获得10
19秒前
19秒前
麦芽糖完成签到,获得积分10
19秒前
orixero应助朴素的士晋采纳,获得10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262