Enhancing pseudocapacitive behavior of MOF-derived TiO2-x@Carbon nanocubes via Mo-doping for high-performance sodium-ion capacitors

阳极 材料科学 兴奋剂 阴极 结晶度 碳纤维 化学工程 纳米技术 电极 光电子学 化学 复合数 复合材料 物理化学 工程类
作者
Tianhao Yao,Hongkang Wang,Yuanbin Qin,Jian‐Wen Shi,Yonghong Cheng
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:253: 110557-110557 被引量:58
标识
DOI:10.1016/j.compositesb.2023.110557
摘要

Sodium-ion capacitors (SICs) have been viewed as promising energy storage devices because of their high power/energy density, cycling stability and cost-efficiency, but they are also restricted by the unmatched reaction kinetics between the battery-type anode and capacitor-type cathode. Herein, we present a novel way to enhance the pseudocapacitive storage behavior and reaction kinetics of TiO2-based anode via Mo-doping and carbon hybridization, using the Mo-doped titanium metal-organic framework (Ti-MOF, MIL-125) as the precursor. Appropriate amount of Mo-doping (Mo:Ti = 1:9) induces the shape evolution from the round MIL-125 nanotablets to square Mo-MIL-125 nanocubes, which can be readily converted to Mo-doped TiO2-x@carbon composite with conformal morphology (namely, Mo0.1-TiO2-x@C). Mo-doping increases the concentration of Ti3+/oxygen vacancy and decreases its crystallinity, which greatly enhances the reaction kinetics and sodium storage performance. When examined in half-cells, the Mo0.1-TiO2-x@C anode exhibits higher pseudocapacitive contribution (∼85%), higher reversible capacity (216 mAh g−1 at 0.5 A g−1), and better cycling and rate capability (185 mAh g−1 even after 3000 cycles at 1 A g−1). When paired with commercial activated carbon (AC) as cathode, the Mo0.1-TiO2-x@C//AC SICs deliver a maximum energy density of 269.37 Wh kg−1 at a power density of 80.4 W kg−1 and 61.75 Wh kg−1 even at a high power density of 5421.95 W kg−1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助JR采纳,获得10
1秒前
1秒前
cc完成签到,获得积分20
1秒前
李爱国应助111采纳,获得10
1秒前
jy发布了新的文献求助10
1秒前
好好完成签到 ,获得积分10
2秒前
阿希塔完成签到,获得积分10
2秒前
JamesPei应助看看采纳,获得10
2秒前
4秒前
4秒前
卢健辉发布了新的文献求助10
4秒前
5秒前
cookie完成签到,获得积分10
5秒前
JMZ完成签到 ,获得积分10
7秒前
英姑应助星星采纳,获得10
7秒前
spurs17发布了新的文献求助30
8秒前
LH完成签到,获得积分10
8秒前
CodeCraft应助Island采纳,获得10
9秒前
annis完成签到,获得积分10
9秒前
小黄应助asir_xw采纳,获得10
10秒前
认真的rain完成签到,获得积分10
10秒前
糊涂的小伙完成签到,获得积分10
11秒前
芒果豆豆完成签到,获得积分10
11秒前
赎罪完成签到 ,获得积分10
12秒前
卢健辉完成签到,获得积分10
12秒前
12秒前
13秒前
负责的中道完成签到,获得积分10
14秒前
dyh6802发布了新的文献求助10
14秒前
儒雅八宝粥完成签到 ,获得积分10
14秒前
深情安青应助科研小菜鸟采纳,获得10
15秒前
姜灭绝完成签到,获得积分10
15秒前
三七二一完成签到,获得积分10
15秒前
16秒前
大方的寒烟完成签到,获得积分10
17秒前
19秒前
橘寄完成签到,获得积分10
19秒前
请叫我风吹麦浪应助mito采纳,获得10
20秒前
Smallhei完成签到,获得积分10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808