Recognizing distant faces

显著性(神经科学) 面部识别系统 人工智能 背景(考古学) 心理学 认知心理学 模式识别(心理学) 面子(社会学概念) 最佳显著性理论 计算机科学 沟通 社会心理学 社会科学 生物 社会学 古生物学
作者
Izzat Jarudi,Ainsley Braun,Marin Vogelsang,Lukas Vogelsang,Sharon Gilad-Gutnick,Xavier Boix Bosch,Walter V. Dixon,Pawan Sinha
出处
期刊:Vision Research [Elsevier]
卷期号:205: 108184-108184
标识
DOI:10.1016/j.visres.2023.108184
摘要

As an 'early alerting' sense, one of the primary tasks for the human visual system is to recognize distant objects. In the specific context of facial identification, this ecologically important task has received surprisingly little attention. Most studies have investigated facial recognition at short, fixed distances. Under these conditions, the photometric and configural information related to the eyes, nose and mouth are typically found to be primary determinants of facial identity. Here we characterize face recognition performance as a function of viewing distance and investigate whether the primacy of the internal features continues to hold across increasing viewing distances. We find that exploring the distance dimension reveals a qualitatively different salience distribution across a face. Observers' recognition performance significantly exceeds that obtained with the internal facial physiognomy, and also exceeds the computed union of performances with internal and external features alone, suggesting that in addition to the mutual configuration of the eyes, nose and mouth, it is the relationships between these features and external head contours that are crucial for recognition. We have also conducted computational studies with convolutional neural networks trained on the task of face recognition to examine whether this representational bias could emerge spontaneously through exposure to faces. The results provide partial support for this possibility while also highlighting important differences between the human and artificial system. These findings have implications for the nature of facial representations useful for a visual system, whether human or machine, for recognition over large and varying distances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
www完成签到,获得积分10
2秒前
老实乌冬面完成签到 ,获得积分10
2秒前
上官若男应助huhuhuhuxuan采纳,获得30
2秒前
2秒前
婷婷发布了新的文献求助50
2秒前
大胆的渊思完成签到 ,获得积分10
2秒前
cream发布了新的文献求助10
2秒前
gc发布了新的文献求助10
2秒前
cora发布了新的文献求助10
2秒前
CipherSage应助faye采纳,获得10
3秒前
守墓人完成签到 ,获得积分10
4秒前
4秒前
充电宝应助陈民采纳,获得10
4秒前
PPSlu发布了新的文献求助10
5秒前
海风完成签到,获得积分10
5秒前
思源应助wm采纳,获得10
5秒前
6秒前
6秒前
嗳7发布了新的文献求助10
6秒前
xixi完成签到,获得积分20
6秒前
6秒前
6秒前
小聖发布了新的文献求助10
7秒前
彭于晏应助cream采纳,获得10
7秒前
李健应助惠JUI采纳,获得10
7秒前
未央完成签到,获得积分10
7秒前
8秒前
xixi发布了新的文献求助10
9秒前
9秒前
体贴薯片发布了新的文献求助10
9秒前
10秒前
chenren发布了新的文献求助10
10秒前
10秒前
金色琥珀完成签到,获得积分10
10秒前
DDONG826发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441097
求助须知:如何正确求助?哪些是违规求助? 3037459
关于积分的说明 8969152
捐赠科研通 2726008
什么是DOI,文献DOI怎么找? 1495147
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687922