Effective upper and lower bounds for a two-stage reentrant flexible flow shop scheduling problem

流水车间调度 作业车间调度 上下界 计算机科学 数学优化 调度(生产过程) 可重入 整数规划 算法 数学 地铁列车时刻表 操作系统 数学分析 程序设计语言
作者
Shuang Zheng,Zhengwen He,Zhen Yang,Chengbin Chu,Nengmin Wang
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:153: 106183-106183 被引量:3
标识
DOI:10.1016/j.cor.2023.106183
摘要

Flow shop scheduling is important in modern industrial manufacturing to improve production efficiency. This paper studies a realistic two-stage reentrant flexible flow shop scheduling problem (TSRFFS) with broad applications in aircraft scheduling, manufacturing, and the medical industry, etc. Given a flow shop with a single machine in Stage 1, a set of parallel machines in Stage 2, and a set of jobs to be processed, the TSRFFS aims to determine the completion time of jobs in Stage 1 and then that in Stage 2, and finally returns to Stage 1, as well as determine the job-to-machine assignment in Stage 2 such that all jobs are served and the total processing time of jobs (makespan) is minimized. The optimal solution properties are investigated, based on which a mixed integer programming mathematical model and a greedy random constructive heuristic for near optimal solutions are proposed. By solving series of a revised parallel machine scheduling problem (Pm||Cmax), a lower bound method is developed. Extensive numerical experiments on 1560 random instances with up to 1000 jobs and 50 realistic airport simulation instances were conducted to demonstrate the effectiveness of the proposed algorithms. The average gap between the proposed upper bound and the best lower bounds is approximately 1.78%, and the average gap between the proposed lower bound and the best upper bounds is 0.91%, which far outperforms state-of-the-art approaches in terms of solution quality and computational time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wt完成签到,获得积分10
刚刚
Akim应助犬来八荒采纳,获得10
1秒前
DellDai完成签到,获得积分10
1秒前
Auoror完成签到,获得积分10
1秒前
returno_0完成签到 ,获得积分10
2秒前
spring给spring的求助进行了留言
2秒前
FashionBoy应助欢喜的依风采纳,获得10
3秒前
3秒前
松松完成签到,获得积分10
3秒前
huqing发布了新的文献求助10
4秒前
今日店休完成签到,获得积分20
4秒前
舟舟完成签到 ,获得积分10
4秒前
azmj发布了新的文献求助10
5秒前
孤独的面包完成签到,获得积分20
5秒前
完美世界应助Jimmy Ko采纳,获得10
5秒前
6秒前
KING发布了新的文献求助10
6秒前
6秒前
天天快乐应助向日葵采纳,获得10
7秒前
简单的百川关注了科研通微信公众号
7秒前
川流发布了新的文献求助10
9秒前
今日店休发布了新的文献求助10
9秒前
10秒前
10秒前
ding应助多情的飞绿采纳,获得10
11秒前
11秒前
仲谋发布了新的文献求助50
11秒前
邓什么邓发布了新的文献求助10
14秒前
DAT完成签到 ,获得积分10
14秒前
上官若男应助nieyy采纳,获得10
15秒前
16秒前
17秒前
aurevoir完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
21秒前
且歌且行完成签到,获得积分10
21秒前
Kessino发布了新的文献求助10
21秒前
叽了咕噜应助科研通管家采纳,获得20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642830
求助须知:如何正确求助?哪些是违规求助? 4759998
关于积分的说明 15019132
捐赠科研通 4801370
什么是DOI,文献DOI怎么找? 2566676
邀请新用户注册赠送积分活动 1524579
关于科研通互助平台的介绍 1484206