自愈水凝胶
组织工程
神经组织工程
生物医学工程
生物相容性
再生(生物学)
壳聚糖
材料科学
神经组织
化学
生物化学
神经科学
生物
细胞生物学
医学
高分子化学
冶金
作者
Mozammel Haque Bhuiyan,Andrew N. Clarkson,M. Azam Ali
标识
DOI:10.1016/j.colsurfb.2023.113193
摘要
Regeneration of neural tissue and recovery of lost functions following an accident or disease to the central nervous system remains a major challenge worldwide, with limited treatment options available. The main reason for the failure of conventional therapeutic techniques to regenerate neural tissue is the presence of blood-brain barrier separating nervous system from systemic circulation and the limited capacity of self-regeneration of the nervous system. Injectable hydrogels have shown great promise for neural tissue engineering given their suitability for minimally invasive in situ delivery and tunable mechanical and biological properties. Chitosan (CS)/β-glycerophosphate (β-GP) hydrogels have been extensively investigated and shown regenerative potential in a wide variety of tissues such as bone and cartilage tissue engineering. However, the potential of CS/β-GP hydrogels has never been tested for injectable neural tissue engineering applications. In the present study, CS/β-GP hydrogels, consisting of 0.5–2% CS and 2–3% β-GP, were prepared and characterized to investigate their suitability for injectable neural tissue engineering applications. The resulting CS/β-GP-hydrogels showed a varying range of properties depending on the CS/β-GP blend ratio. In particular, the 0.5%:3% and 0.75%:3% CS/β-GP hydrogels underwent rapid gelation (3 min and 5 min, respectively) at physiological temperature (37 °C) and pH (7.4). They also had suitable porosity, osmolality, swelling behavior and biodegradation for tissue engineering. The biocompatibility of hydrogels was determined in vitro using PC12 cells, an immortalized cell line with neuronal cell-like properties, revealing that these hydrogels supported cell growth and proliferation. In conclusion, the thermoresponsive 0.5%:3% and 0.75%:3% CS/β-GP hydrogels had the greatest potential for neural tissue engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI