IntroUNET: identifying introgressed alleles via semantic segmentation

分割 等位基因 人工智能 自然语言处理 计算机科学 生物 遗传学 进化生物学 基因
作者
Dylan D. Ray,Lex E. Flagel,Daniel R. Schrider
标识
DOI:10.1101/2023.02.07.527435
摘要

A growing body of evidence suggests that gene flow between closely related species is a widespread phenomenon. Alleles that introgress from one species into a close relative are typically neutral or deleterious, but sometimes confer a significant fitness advantage. Given the potential relevance to speciation and adaptation, numerous methods have therefore been devised to identify regions of the genome that have experienced introgression. Recently, supervised machine learning approaches have been shown to be highly effective for detecting introgression. One especially promising approach is to treat population genetic inference as an image classification problem, and feed an image representation of a population genetic alignment as input to a deep neural network that distinguishes among evolutionary models (i.e. introgression or no introgression). However, if we wish to investigate the full extent and fitness effects of introgression, merely identifying genomic regions in a population genetic alignment that harbor introgressed loci is insufficient---ideally we would be able to infer precisely which individuals have introgressed material and at which positions in the genome. Here we adapt a deep learning algorithm for semantic segmentation, the task of correctly identifying the type of object to which each individual pixel in an image belongs, to the task of identifying introgressed alleles. Our trained neural network is thus able to infer, for each individual in a two-population alignment, which of those individual's alleles were introgressed from the other population. We use simulated data to show that this approach is highly accurate, and that it can be readily extended to identify alleles that are introgressed from an unsampled "ghost" population, performing comparably to a supervised learning method tailored specifically to that task. Finally, we apply this method to data from Drosophila , showing that it is able to accurately recover introgressed haplotypes from real data. This analysis reveals that introgressed alleles are typically confined to lower frequencies within genic regions, suggestive of purifying selection, but are found at much higher frequencies in a region previously shown to be affected by adaptive introgression. Our method's success in recovering introgressed haplotypes in challenging real-world scenarios underscores the utility of deep learning approaches for making richer evolutionary inferences from genomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangjoy完成签到,获得积分10
1秒前
pinklay完成签到 ,获得积分10
1秒前
1秒前
科研通AI5应助ttt采纳,获得10
2秒前
重要问旋完成签到,获得积分10
2秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得30
4秒前
老阎应助科研通管家采纳,获得30
4秒前
姜莹应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
ED应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
斯可完成签到,获得积分10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
郁乾完成签到,获得积分10
5秒前
朱加凤完成签到,获得积分10
5秒前
NI发布了新的文献求助10
5秒前
尛海完成签到,获得积分10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066