IntroUNET: identifying introgressed alleles via semantic segmentation

分割 等位基因 人工智能 自然语言处理 计算机科学 生物 遗传学 进化生物学 基因
作者
Dylan D. Ray,Lex E. Flagel,Daniel R. Schrider
标识
DOI:10.1101/2023.02.07.527435
摘要

A growing body of evidence suggests that gene flow between closely related species is a widespread phenomenon. Alleles that introgress from one species into a close relative are typically neutral or deleterious, but sometimes confer a significant fitness advantage. Given the potential relevance to speciation and adaptation, numerous methods have therefore been devised to identify regions of the genome that have experienced introgression. Recently, supervised machine learning approaches have been shown to be highly effective for detecting introgression. One especially promising approach is to treat population genetic inference as an image classification problem, and feed an image representation of a population genetic alignment as input to a deep neural network that distinguishes among evolutionary models (i.e. introgression or no introgression). However, if we wish to investigate the full extent and fitness effects of introgression, merely identifying genomic regions in a population genetic alignment that harbor introgressed loci is insufficient---ideally we would be able to infer precisely which individuals have introgressed material and at which positions in the genome. Here we adapt a deep learning algorithm for semantic segmentation, the task of correctly identifying the type of object to which each individual pixel in an image belongs, to the task of identifying introgressed alleles. Our trained neural network is thus able to infer, for each individual in a two-population alignment, which of those individual's alleles were introgressed from the other population. We use simulated data to show that this approach is highly accurate, and that it can be readily extended to identify alleles that are introgressed from an unsampled "ghost" population, performing comparably to a supervised learning method tailored specifically to that task. Finally, we apply this method to data from Drosophila , showing that it is able to accurately recover introgressed haplotypes from real data. This analysis reveals that introgressed alleles are typically confined to lower frequencies within genic regions, suggestive of purifying selection, but are found at much higher frequencies in a region previously shown to be affected by adaptive introgression. Our method's success in recovering introgressed haplotypes in challenging real-world scenarios underscores the utility of deep learning approaches for making richer evolutionary inferences from genomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jerry发布了新的文献求助10
2秒前
2秒前
狂奔弟弟2完成签到 ,获得积分10
2秒前
禾苗完成签到,获得积分10
2秒前
3秒前
李爱国应助跳跃的翼采纳,获得10
3秒前
David发布了新的文献求助200
4秒前
jyy应助kyt采纳,获得10
4秒前
777发布了新的文献求助10
4秒前
Mende发布了新的文献求助10
4秒前
123完成签到,获得积分10
5秒前
5秒前
老友记1999完成签到,获得积分10
6秒前
郭子仪发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
烂漫傲晴发布了新的文献求助10
9秒前
牛马王完成签到,获得积分20
10秒前
11秒前
12秒前
锦鲤完成签到,获得积分10
12秒前
illusion完成签到,获得积分10
12秒前
hahahaweiwei完成签到,获得积分10
12秒前
上官若男应助酷酷的蚂蚁采纳,获得30
13秒前
Apocalypse_zjz完成签到,获得积分10
13秒前
YamDaamCaa应助777采纳,获得30
13秒前
14秒前
14秒前
Hello应助twob采纳,获得10
15秒前
16秒前
郭子仪完成签到,获得积分10
16秒前
无问西东完成签到 ,获得积分10
16秒前
恃6完成签到,获得积分20
16秒前
Mende完成签到,获得积分10
16秒前
musejie发布了新的文献求助10
18秒前
Jasper应助可爱deyi采纳,获得10
18秒前
欣喜谷槐发布了新的文献求助10
18秒前
CipherSage应助寒冷手链采纳,获得10
19秒前
王一一完成签到,获得积分10
19秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971216
求助须知:如何正确求助?哪些是违规求助? 3515911
关于积分的说明 11180016
捐赠科研通 3251003
什么是DOI,文献DOI怎么找? 1795626
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805207