清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

IntroUNET: identifying introgressed alleles via semantic segmentation

分割 等位基因 人工智能 自然语言处理 计算机科学 生物 遗传学 进化生物学 基因
作者
Dylan D. Ray,Lex E. Flagel,Daniel R. Schrider
标识
DOI:10.1101/2023.02.07.527435
摘要

A growing body of evidence suggests that gene flow between closely related species is a widespread phenomenon. Alleles that introgress from one species into a close relative are typically neutral or deleterious, but sometimes confer a significant fitness advantage. Given the potential relevance to speciation and adaptation, numerous methods have therefore been devised to identify regions of the genome that have experienced introgression. Recently, supervised machine learning approaches have been shown to be highly effective for detecting introgression. One especially promising approach is to treat population genetic inference as an image classification problem, and feed an image representation of a population genetic alignment as input to a deep neural network that distinguishes among evolutionary models (i.e. introgression or no introgression). However, if we wish to investigate the full extent and fitness effects of introgression, merely identifying genomic regions in a population genetic alignment that harbor introgressed loci is insufficient---ideally we would be able to infer precisely which individuals have introgressed material and at which positions in the genome. Here we adapt a deep learning algorithm for semantic segmentation, the task of correctly identifying the type of object to which each individual pixel in an image belongs, to the task of identifying introgressed alleles. Our trained neural network is thus able to infer, for each individual in a two-population alignment, which of those individual's alleles were introgressed from the other population. We use simulated data to show that this approach is highly accurate, and that it can be readily extended to identify alleles that are introgressed from an unsampled "ghost" population, performing comparably to a supervised learning method tailored specifically to that task. Finally, we apply this method to data from Drosophila , showing that it is able to accurately recover introgressed haplotypes from real data. This analysis reveals that introgressed alleles are typically confined to lower frequencies within genic regions, suggestive of purifying selection, but are found at much higher frequencies in a region previously shown to be affected by adaptive introgression. Our method's success in recovering introgressed haplotypes in challenging real-world scenarios underscores the utility of deep learning approaches for making richer evolutionary inferences from genomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇娇大王完成签到,获得积分10
16秒前
小呵点完成签到 ,获得积分10
40秒前
nine2652完成签到 ,获得积分10
43秒前
帅气雪糕完成签到 ,获得积分10
48秒前
57秒前
雪山飞龙完成签到,获得积分10
59秒前
Gary完成签到 ,获得积分10
59秒前
秋夜临完成签到,获得积分10
1分钟前
ewind完成签到 ,获得积分10
1分钟前
Apricity完成签到,获得积分10
1分钟前
1分钟前
六六完成签到 ,获得积分10
1分钟前
hhhzzy完成签到 ,获得积分10
1分钟前
属实有点拉胯完成签到 ,获得积分10
2分钟前
瘦瘦寒凡完成签到 ,获得积分10
2分钟前
2分钟前
chi完成签到 ,获得积分10
2分钟前
饱满烙完成签到 ,获得积分10
2分钟前
寒战完成签到 ,获得积分10
2分钟前
2分钟前
桐桐应助adeno采纳,获得10
2分钟前
小人物完成签到,获得积分10
2分钟前
彩色的芷容完成签到 ,获得积分20
2分钟前
1250241652完成签到,获得积分10
2分钟前
3分钟前
3分钟前
chiyudoubao发布了新的文献求助10
3分钟前
微卫星不稳定完成签到 ,获得积分10
3分钟前
3分钟前
如泣草芥完成签到,获得积分0
3分钟前
yuehan完成签到 ,获得积分10
3分钟前
adeno发布了新的文献求助10
3分钟前
3分钟前
大模型应助chiyudoubao采纳,获得10
3分钟前
study00122完成签到,获得积分10
3分钟前
xmfffff完成签到,获得积分10
3分钟前
烟花应助just123采纳,获得30
3分钟前
新奇完成签到 ,获得积分10
3分钟前
ghan完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244791
求助须知:如何正确求助?哪些是违规求助? 2888424
关于积分的说明 8252900
捐赠科研通 2556918
什么是DOI,文献DOI怎么找? 1385486
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626294