Sinogram domain metal artifact correction of CT via deep learning

人工智能 计算机科学 图像质量 工件(错误) 计算机视觉 分割 深度学习 图像融合 图像(数学) 核医学 模式识别(心理学) 医学
作者
Yun Zhu,Haitao Zhao,Tangsheng Wang,Lei Deng,Yupeng Yang,Yuming Jiang,Na Li,Yinping Chan,Jingjing Dai,Chulong Zhang,Wenjuan Zhang,Yaoqin Xie,Xiaokun Liang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106710-106710
标识
DOI:10.1016/j.compbiomed.2023.106710
摘要

Metal artifacts can significantly decrease the quality of computed tomography (CT) images. This occurs as X-rays penetrate implanted metals, causing severe attenuation and resulting in metal artifacts in the CT images. This degradation in image quality can hinder subsequent clinical diagnosis and treatment planning. Beam hardening artifacts are often manifested as severe strip artifacts in the image domain, affecting the overall quality of the reconstructed CT image. In the sinogram domain, metal is typically located in specific areas, and image processing in these regions can preserve image information in other areas, making the model more robust. To address this issue, we propose a region-based correction of beam hardening artifacts in the sinogram domain using deep learning. We present a model composed of three modules: (a) a Sinogram Metal Segmentation Network (Seg-Net), (b) a Sinogram Enhancement Network (Sino-Net), and (c) a Fusion Module. The model starts by using the Attention U-Net network to segment the metal regions in the sinogram. The segmented metal regions are then interpolated to obtain a sinogram image free of metal. The Sino-Net is then applied to compensate for the loss of organizational and artifact information in the metal regions. The corrected metal sinogram and the interpolated metal-free sinogram are then used to reconstruct the metal CT and metal-free CT images, respectively. Finally, the Fusion Module combines the two CT images to produce the result. Our proposed method shows strong performance in both qualitative and quantitative evaluations. The peak signal-to-noise ratio (PSNR) of the CT image before and after correction was 18.22 and 30.32, respectively. The structural similarity index measure (SSIM) improved from 0.75 to 0.99, and the weighted peak signal-to-noise ratio (WPSNR) increased from 21.69 to 35.68. Our proposed method demonstrates the reliability of high-accuracy correction of beam hardening artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
首席医官完成签到,获得积分10
刚刚
席冥完成签到,获得积分10
2秒前
庞初南完成签到,获得积分10
4秒前
5秒前
7秒前
8秒前
8秒前
Orange应助就是笨怎么了采纳,获得10
9秒前
9秒前
四月发布了新的文献求助10
12秒前
12秒前
chaoshen完成签到,获得积分10
14秒前
白芍发布了新的文献求助30
15秒前
莎莎发布了新的文献求助10
16秒前
游侠客完成签到,获得积分10
18秒前
19秒前
方超完成签到,获得积分10
19秒前
20秒前
云云邶完成签到,获得积分10
20秒前
20秒前
白芍完成签到,获得积分10
22秒前
22秒前
25秒前
26秒前
zsc668完成签到,获得积分10
28秒前
大气海露完成签到,获得积分10
30秒前
呆萌晓啸完成签到,获得积分10
31秒前
31秒前
大气海露发布了新的文献求助10
32秒前
oceanao应助muyassar采纳,获得10
33秒前
34秒前
大可完成签到,获得积分10
34秒前
35秒前
平淡驳完成签到 ,获得积分10
37秒前
37秒前
38秒前
38秒前
39秒前
木子发布了新的文献求助10
39秒前
共享精神应助六花采纳,获得10
40秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164170
求助须知:如何正确求助?哪些是违规求助? 2814884
关于积分的说明 7906945
捐赠科研通 2474500
什么是DOI,文献DOI怎么找? 1317533
科研通“疑难数据库(出版商)”最低求助积分说明 631841
版权声明 602228