Sinogram domain metal artifact correction of CT via deep learning

人工智能 计算机科学 图像质量 工件(错误) 计算机视觉 分割 深度学习 图像融合 图像(数学) 核医学 模式识别(心理学) 医学
作者
Yun Zhu,Haitao Zhao,Tangsheng Wang,Lei Deng,Yupeng Yang,Yuming Jiang,Na Li,Yinping Chan,Jingjing Dai,Chulong Zhang,Wenjuan Zhang,Yaoqin Xie,Xiaokun Liang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:155: 106710-106710
标识
DOI:10.1016/j.compbiomed.2023.106710
摘要

Metal artifacts can significantly decrease the quality of computed tomography (CT) images. This occurs as X-rays penetrate implanted metals, causing severe attenuation and resulting in metal artifacts in the CT images. This degradation in image quality can hinder subsequent clinical diagnosis and treatment planning. Beam hardening artifacts are often manifested as severe strip artifacts in the image domain, affecting the overall quality of the reconstructed CT image. In the sinogram domain, metal is typically located in specific areas, and image processing in these regions can preserve image information in other areas, making the model more robust. To address this issue, we propose a region-based correction of beam hardening artifacts in the sinogram domain using deep learning. We present a model composed of three modules: (a) a Sinogram Metal Segmentation Network (Seg-Net), (b) a Sinogram Enhancement Network (Sino-Net), and (c) a Fusion Module. The model starts by using the Attention U-Net network to segment the metal regions in the sinogram. The segmented metal regions are then interpolated to obtain a sinogram image free of metal. The Sino-Net is then applied to compensate for the loss of organizational and artifact information in the metal regions. The corrected metal sinogram and the interpolated metal-free sinogram are then used to reconstruct the metal CT and metal-free CT images, respectively. Finally, the Fusion Module combines the two CT images to produce the result. Our proposed method shows strong performance in both qualitative and quantitative evaluations. The peak signal-to-noise ratio (PSNR) of the CT image before and after correction was 18.22 and 30.32, respectively. The structural similarity index measure (SSIM) improved from 0.75 to 0.99, and the weighted peak signal-to-noise ratio (WPSNR) increased from 21.69 to 35.68. Our proposed method demonstrates the reliability of high-accuracy correction of beam hardening artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuesensu完成签到 ,获得积分10
3秒前
豌豆完成签到,获得积分10
4秒前
M先生完成签到,获得积分10
4秒前
5秒前
7秒前
科研通AI5应助sun采纳,获得10
7秒前
shitzu完成签到 ,获得积分10
8秒前
choco发布了新的文献求助10
10秒前
11秒前
李健的小迷弟应助sun采纳,获得10
11秒前
Jzhang应助liyuchen采纳,获得10
11秒前
魏伯安发布了新的文献求助30
11秒前
jjjjjj发布了新的文献求助30
13秒前
14秒前
伯赏诗霜发布了新的文献求助10
14秒前
糟糕的鹏飞完成签到 ,获得积分10
15秒前
15秒前
欢呼凡旋完成签到,获得积分10
16秒前
韩邹光完成签到,获得积分10
18秒前
xg发布了新的文献求助10
18秒前
19秒前
dktrrrr完成签到,获得积分10
19秒前
季生完成签到,获得积分10
22秒前
徐徐完成签到,获得积分10
22秒前
23秒前
23秒前
haku完成签到,获得积分10
25秒前
可爱的函函应助laodie采纳,获得10
27秒前
Singularity应助忆楠采纳,获得10
28秒前
29秒前
请叫我风吹麦浪应助PengHu采纳,获得30
30秒前
jjjjjj完成签到,获得积分10
30秒前
凝子老师发布了新的文献求助10
32秒前
32秒前
橙子fy16_发布了新的文献求助10
34秒前
cookie完成签到,获得积分10
34秒前
柒柒的小熊完成签到,获得积分10
35秒前
35秒前
Hello应助萌之痴痴采纳,获得10
36秒前
hahaer完成签到,获得积分10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849