Sinogram domain metal artifact correction of CT via deep learning

人工智能 计算机科学 图像质量 工件(错误) 计算机视觉 分割 深度学习 图像融合 图像(数学) 核医学 模式识别(心理学) 医学
作者
Yun Zhu,Haitao Zhao,Tangsheng Wang,Lei Deng,Yupeng Yang,Yuming Jiang,Na Li,Yinping Chan,Jingjing Dai,Chulong Zhang,Wenjuan Zhang,Yaoqin Xie,Xiaokun Liang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:155: 106710-106710
标识
DOI:10.1016/j.compbiomed.2023.106710
摘要

Metal artifacts can significantly decrease the quality of computed tomography (CT) images. This occurs as X-rays penetrate implanted metals, causing severe attenuation and resulting in metal artifacts in the CT images. This degradation in image quality can hinder subsequent clinical diagnosis and treatment planning. Beam hardening artifacts are often manifested as severe strip artifacts in the image domain, affecting the overall quality of the reconstructed CT image. In the sinogram domain, metal is typically located in specific areas, and image processing in these regions can preserve image information in other areas, making the model more robust. To address this issue, we propose a region-based correction of beam hardening artifacts in the sinogram domain using deep learning. We present a model composed of three modules: (a) a Sinogram Metal Segmentation Network (Seg-Net), (b) a Sinogram Enhancement Network (Sino-Net), and (c) a Fusion Module. The model starts by using the Attention U-Net network to segment the metal regions in the sinogram. The segmented metal regions are then interpolated to obtain a sinogram image free of metal. The Sino-Net is then applied to compensate for the loss of organizational and artifact information in the metal regions. The corrected metal sinogram and the interpolated metal-free sinogram are then used to reconstruct the metal CT and metal-free CT images, respectively. Finally, the Fusion Module combines the two CT images to produce the result. Our proposed method shows strong performance in both qualitative and quantitative evaluations. The peak signal-to-noise ratio (PSNR) of the CT image before and after correction was 18.22 and 30.32, respectively. The structural similarity index measure (SSIM) improved from 0.75 to 0.99, and the weighted peak signal-to-noise ratio (WPSNR) increased from 21.69 to 35.68. Our proposed method demonstrates the reliability of high-accuracy correction of beam hardening artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助江峰采纳,获得10
刚刚
思源应助lvv采纳,获得10
1秒前
1秒前
lllllkkkj完成签到,获得积分10
1秒前
呼啦完成签到,获得积分10
2秒前
愫浅发布了新的文献求助10
2秒前
修脚大师发布了新的文献求助10
3秒前
科研通AI6应助pb采纳,获得10
3秒前
嘉的科研完成签到,获得积分10
3秒前
jagger发布了新的文献求助10
4秒前
4秒前
quququ发布了新的文献求助10
4秒前
4秒前
秀丽菠萝完成签到,获得积分10
5秒前
归尘发布了新的文献求助10
5秒前
nc完成签到 ,获得积分10
5秒前
爆米花应助henwunai7106采纳,获得10
6秒前
6秒前
闪闪天晴完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
李耐寒完成签到,获得积分10
8秒前
lsybf发布了新的文献求助10
8秒前
甫_F完成签到,获得积分10
9秒前
9秒前
充电宝应助花呗采纳,获得10
9秒前
赘婿应助wddfz采纳,获得10
9秒前
傲骨完成签到 ,获得积分10
9秒前
乐乐应助蒋蒋采纳,获得10
9秒前
阙女士完成签到,获得积分10
10秒前
10秒前
自己发布了新的文献求助10
10秒前
10秒前
quququ完成签到,获得积分10
10秒前
酷波er应助王军鹏采纳,获得10
11秒前
李耐寒发布了新的文献求助10
11秒前
11秒前
浮游应助土木研学僧采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048461
求助须知:如何正确求助?哪些是违规求助? 4276881
关于积分的说明 13331666
捐赠科研通 4091435
什么是DOI,文献DOI怎么找? 2239026
邀请新用户注册赠送积分活动 1245918
关于科研通互助平台的介绍 1174426