Bioinspired gradient structured soft actuators: From fabrication to application

执行机构 夹持器 软机器人 仿生学 数码产品 稳健性(进化) 纳米技术 可伸缩电子设备 自愈水凝胶 计算机科学 材料科学 机械工程 工程类 人工智能 电气工程 高分子化学 化学 基因 生物化学
作者
He Liu,Ruonan Liu,Kun Chen,Yiying Liu,Yue Zhao,Xiaoyu Cui,Ye Tian
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:461: 141966-141966 被引量:75
标识
DOI:10.1016/j.cej.2023.141966
摘要

The gradient structure inherent in the biological system plays a key role in facilitating efficient and precise actuation. To date, bioinspired gradient structured soft actuators have a groundbreaking impact in many fields such as soft robotics, flexible electronics, and biomedical devices. Bioinspired gradient structured soft actuators overcome complex control of homogeneous actuators and delamination of bilayer actuators. Meanwhile, they can achieve integrated, smooth continuous changes, fast response actuation/recovery, and high robustness during frequent deformations under various external stimuli such as temperature, pH, NIR light, humidity and chemicals. In this review, we mainly focus on recent advances in bioinspired gradient structured soft actuators. First, we briefly present the synthetic materials of gradient structured soft actuators including hydrogels, carbon-based materials, shape memory polymers (SMPs), and liquid crystal polymers (LCPs). Then, we focus on summarizing and comparing five formation mechanisms of gradient structured soft actuators such as UV induction, electric/magnetic field induction, infiltration, wettability and 4D printing. Next, we introduce the representative applications of gradient structured soft actuators, such as smart grippers, bionic soft robots, on–off switches, and flexible electronics. Finally, we have a deep discussion on the existing challenges and future perspectives. The review provides guidance for the design of bioinspired gradient structured soft actuators, which would promote the further development of integrated advanced materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栓牛哥完成签到,获得积分10
2秒前
3秒前
彭于晏应助ornot君君采纳,获得10
4秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
Rondab应助科研通管家采纳,获得10
6秒前
Rondab应助科研通管家采纳,获得10
6秒前
木头人应助科研通管家采纳,获得10
6秒前
核桃应助科研通管家采纳,获得50
6秒前
7秒前
熊猫完成签到,获得积分0
7秒前
慕青应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
orixero应助枯槁赴渊采纳,获得10
7秒前
逸之狐应助科研通管家采纳,获得20
7秒前
yznfly应助科研通管家采纳,获得30
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
无私的以云完成签到,获得积分10
9秒前
10秒前
sun发布了新的文献求助10
10秒前
852应助苏打采纳,获得10
11秒前
11秒前
12秒前
12秒前
ShengQ发布了新的文献求助10
13秒前
13秒前
CXS发布了新的文献求助30
13秒前
科研工头发布了新的文献求助10
14秒前
研友_8RyzBZ发布了新的文献求助10
14秒前
小二郎应助夏艳青采纳,获得10
14秒前
回眸是明眸完成签到,获得积分10
14秒前
zz发布了新的文献求助10
17秒前
17秒前
Hello应助yao采纳,获得10
17秒前
无花果应助怡然小蚂蚁采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821