Bioinspired gradient structured soft actuators: From fabrication to application

执行机构 夹持器 软机器人 仿生学 数码产品 稳健性(进化) 纳米技术 可伸缩电子设备 自愈水凝胶 计算机科学 材料科学 机械工程 工程类 人工智能 电气工程 生物化学 化学 高分子化学 基因
作者
He Liu,Ruonan Liu,Kun Chen,Yiying Liu,Yue Zhao,Xiaoyu Cui,Ye Tian
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:461: 141966-141966 被引量:86
标识
DOI:10.1016/j.cej.2023.141966
摘要

The gradient structure inherent in the biological system plays a key role in facilitating efficient and precise actuation. To date, bioinspired gradient structured soft actuators have a groundbreaking impact in many fields such as soft robotics, flexible electronics, and biomedical devices. Bioinspired gradient structured soft actuators overcome complex control of homogeneous actuators and delamination of bilayer actuators. Meanwhile, they can achieve integrated, smooth continuous changes, fast response actuation/recovery, and high robustness during frequent deformations under various external stimuli such as temperature, pH, NIR light, humidity and chemicals. In this review, we mainly focus on recent advances in bioinspired gradient structured soft actuators. First, we briefly present the synthetic materials of gradient structured soft actuators including hydrogels, carbon-based materials, shape memory polymers (SMPs), and liquid crystal polymers (LCPs). Then, we focus on summarizing and comparing five formation mechanisms of gradient structured soft actuators such as UV induction, electric/magnetic field induction, infiltration, wettability and 4D printing. Next, we introduce the representative applications of gradient structured soft actuators, such as smart grippers, bionic soft robots, on–off switches, and flexible electronics. Finally, we have a deep discussion on the existing challenges and future perspectives. The review provides guidance for the design of bioinspired gradient structured soft actuators, which would promote the further development of integrated advanced materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助DAYAN采纳,获得10
1秒前
qq发布了新的文献求助10
1秒前
qqqqq发布了新的文献求助10
1秒前
浮游应助Henvy采纳,获得10
2秒前
zhonglv7应助柏小霜采纳,获得10
3秒前
天天快乐应助储明明采纳,获得10
4秒前
领导范儿应助奶油采纳,获得10
6秒前
科研通AI6应助情红锐采纳,获得10
6秒前
7秒前
李健的小迷弟应助Ahan采纳,获得10
8秒前
qqqqq完成签到,获得积分10
9秒前
lss完成签到,获得积分10
9秒前
葡萄发布了新的文献求助50
10秒前
Zw完成签到,获得积分10
10秒前
12秒前
ybigwhite应助柏小霜采纳,获得10
13秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
yoyo20012623发布了新的文献求助10
17秒前
18秒前
18秒前
完美世界应助蛋蛋采纳,获得10
18秒前
18秒前
葡萄完成签到,获得积分10
19秒前
19秒前
19秒前
鱼跃发布了新的文献求助10
20秒前
xcx关闭了xcx文献求助
21秒前
licheng发布了新的文献求助100
21秒前
cpl关注了科研通微信公众号
22秒前
顾矜应助烤鱼的夹克采纳,获得10
22秒前
鄢亮发布了新的文献求助10
23秒前
24秒前
ChenJiahao完成签到,获得积分10
24秒前
24秒前
25秒前
独特麦片发布了新的文献求助10
25秒前
pj发布了新的文献求助10
25秒前
25秒前
gu完成签到 ,获得积分10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135125
求助须知:如何正确求助?哪些是违规求助? 4335681
关于积分的说明 13507506
捐赠科研通 4173285
什么是DOI,文献DOI怎么找? 2288314
邀请新用户注册赠送积分活动 1289041
关于科研通互助平台的介绍 1230093