A DWI-based radiomics-clinical machine learning model to preoperatively predict the futile recanalization after endovascular treatment of acute basilar artery occlusion patients

医学 接收机工作特性 队列 改良兰金量表 溶栓 无线电技术 置信区间 曲线下面积 放射科 逻辑回归 Lasso(编程语言) 机器学习 核医学 内科学 缺血 心肌梗塞 缺血性中风 万维网 计算机科学
作者
Yuqi Luo,Xuan Sun,Xin Kong,Xu Tong,Fengjun Xi,Yu M,Zhongrong Miao,Jun Ma
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:161: 110731-110731 被引量:12
标识
DOI:10.1016/j.ejrad.2023.110731
摘要

To develop an effective machine learning model to preoperatively predict the occurrence of futile recanalization (FR) of acute basilar artery occlusion (ABAO) patients with endovascular treatment (EVT).Data from 132 ABAO patients (109 male [82.6 %]; mean age ± standard deviation, 59.1 ± 12.5 years) were randomly divided into the training (n = 106) and test cohort (n = 26) with a ratio of 8:2. FR is defined as a poor outcome [modified Rankin Scale (mRS) 4-6] despite a successful recanalization [modified Thrombolysis in Cerebral Infarction (mTICI) ≥ 2b]. A total of 1130 radiomics features were extracted from diffusion-weighted imaging (DWI) images. The least absolute shrinkage and selection operator (LASSO) regression method was applicated to select features. Support vector machine (SVM) was applicated to construct radiomics and clinical models. Finally, a radiomics-clinical model that combined clinical with radiomics features was developed. The models were evaluated by receiver operating characteristic (ROC) curve and decision curve.The area under the receiver operating characteristic (ROC) curve (AUC) of the radiomics-clinical model was 0.897 (95 % confidence interval, 0.837-0.958) in the training cohort and 0.935 (0.833-1.000) in the test cohort. The AUC of the radiomics model was 0.887 (0.824-0.951) in the training cohort and 0.840 (0.680-1.000) in the test cohort. The AUC of the clinical model was 0.746 (0.652-0.840) in the training cohort and 0.766 (0.569-0.964) in the test cohort. The AUC of the radiomics-clinical model was significantly larger than the clinical model (p = 0.016). A radiomics-clinical nomogram was developed. The decision curve analysis indicated its clinical usefulness.The DWI-based radiomics-clinical machine learning model achieved satisfactory performance in predicting the FR of ABAO patients preoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
biyim发布了新的文献求助10
1秒前
1秒前
2秒前
研友_VZG7GZ应助苗条的发箍采纳,获得10
2秒前
3秒前
彩虹猫发布了新的文献求助40
4秒前
4秒前
英姑应助吴若魔采纳,获得10
5秒前
5秒前
mzc完成签到 ,获得积分10
5秒前
严珍珍完成签到 ,获得积分10
6秒前
6秒前
贤嘚嘚发布了新的文献求助10
7秒前
mawanyu发布了新的文献求助10
7秒前
Sophia发布了新的文献求助10
7秒前
wst完成签到,获得积分20
9秒前
10秒前
lvlv完成签到,获得积分10
10秒前
wst发布了新的文献求助10
11秒前
贤嘚嘚完成签到,获得积分10
11秒前
sanjin发布了新的文献求助10
14秒前
14秒前
大个应助Julie采纳,获得10
15秒前
捉一只小鱼完成签到 ,获得积分10
15秒前
17秒前
17秒前
wnx发布了新的文献求助10
18秒前
科研通AI5应助eleven采纳,获得10
18秒前
科研通AI5应助wst采纳,获得10
21秒前
外向一一发布了新的文献求助10
24秒前
25秒前
biyim完成签到,获得积分20
26秒前
srx完成签到,获得积分10
27秒前
29秒前
29秒前
Carolna发布了新的文献求助10
30秒前
今天只做一件事应助李进采纳,获得10
33秒前
虚幻天空发布了新的文献求助10
33秒前
qqxx发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775402
求助须知:如何正确求助?哪些是违规求助? 3321094
关于积分的说明 10203375
捐赠科研通 3035963
什么是DOI,文献DOI怎么找? 1665887
邀请新用户注册赠送积分活动 797128
科研通“疑难数据库(出版商)”最低求助积分说明 757744