已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mobile Edge Intelligence for Large Language Models: A Contemporary Survey

计算机科学 GSM演进的增强数据速率 数据科学 人工智能
作者
Guanqiao Qu,Qiyuan Chen,Wei Wei,Zheng Lin,Xianhao Chen,Kaibin Huang
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/comst.2025.3527641
摘要

On-device large language models (LLMs), referring to running LLMs on edge devices, have raised considerable interest since they are more cost-effective, latency-efficient, and privacy-preserving compared with the cloud paradigm. Nonetheless, the performance of on-device LLMs is intrinsically constrained by resource limitations on edge devices. Sitting between cloud and on-device AI, mobile edge intelligence (MEI) presents a viable solution by provisioning AI capabilities at the edge of mobile networks. This article provides a contemporary survey on harnessing MEI for LLMs. We begin by illustrating several killer applications to demonstrate the urgent need for deploying LLMs at the network edge. Next, we present the preliminaries of LLMs and MEI, followed by resource-efficient LLM techniques. We then present an architectural overview of MEI for LLMs (MEI4LLM), outlining its core components and how it supports the deployment of LLMs. Subsequently, we delve into various aspects of MEI4LLM, extensively covering edge LLM caching and delivery, edge LLM training, and edge LLM inference. Finally, we identify future research opportunities. We hope this article inspires researchers in the field to leverage mobile edge computing to facilitate LLM deployment, thereby unleashing the potential of LLMs across various privacy-and delay-sensitive applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dabao完成签到,获得积分10
1秒前
1秒前
2秒前
陈晓明发布了新的文献求助20
2秒前
Bella发布了新的文献求助10
3秒前
3秒前
TiY发布了新的文献求助10
4秒前
健康发布了新的文献求助10
4秒前
充电宝应助Cindy采纳,获得10
6秒前
George完成签到,获得积分10
7秒前
钮祜禄萱完成签到 ,获得积分10
8秒前
云轰2857发布了新的文献求助10
8秒前
William_l_c完成签到,获得积分10
9秒前
涵涵涵hh完成签到 ,获得积分10
19秒前
坚强觅珍完成签到 ,获得积分10
19秒前
夏郁完成签到 ,获得积分10
20秒前
汤汤完成签到 ,获得积分10
20秒前
彼翎完成签到,获得积分10
20秒前
风起云涌完成签到,获得积分10
23秒前
24秒前
啥文献找不到完成签到 ,获得积分10
29秒前
英姑应助单薄青亦采纳,获得10
32秒前
DrSong完成签到,获得积分10
33秒前
domingo完成签到,获得积分10
36秒前
Jasper应助小丸子采纳,获得10
37秒前
TiY完成签到,获得积分10
38秒前
38秒前
矮小的祥发布了新的文献求助10
39秒前
39秒前
chrysophoron给chrysophoron的求助进行了留言
43秒前
Vaseegara完成签到 ,获得积分10
45秒前
45秒前
Aobo完成签到,获得积分20
47秒前
48秒前
清飏完成签到,获得积分10
48秒前
单薄青亦发布了新的文献求助10
51秒前
53秒前
53秒前
54秒前
东风夜放花千树完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890007
捐赠科研通 4727175
什么是DOI,文献DOI怎么找? 2545923
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236