Phages adapt to recognize an O-antigen polysaccharide site by mutating the ‘backup’ tail protein ORF59, enabling reinfection of phage-resistant Klebsiella pneumoniae

肺炎克雷伯菌 微生物学 病毒学 生物 抗原 克雷伯菌 噬菌体 细菌蛋白 细菌 大肠杆菌 基因 遗传学
作者
Ping Li,Wenjie Ma,Jun Cheng,Chunjun Zhan,Hongzhou Lu,Jiayin Shen,Xin Zhou
出处
期刊:Emerging microbes & infections [Informa]
标识
DOI:10.1080/22221751.2025.2455592
摘要

Phages demonstrate remarkable promise as antimicrobial agents against antibiotic-resistant bacteria. However, the emergence of phage-resistant strains poses challenges to their effective application. In this paper, we presented the isolation of a phage adaptive mutant that demonstrated enhanced and sustained antibacterial efficacy through the co-evolution of Klebsiella pneumoniae (K. pneumoniae) 111-2 and phage ZX1Δint in vitro. Our experiments revealed that phage ZX1Δint successfully completed the adsorption phase by binding to the host surface, specifically targeting the capsular polysaccharide (CPS) receptor via the primary receptor-binding protein (RBP) ORF60 and the auxiliary RBP ORF59. Upon exposure to phage predation, mutations in genes wbaP, wbaZ or wzc, which encode the synthesis of the CPS, conferred resistance by reducing phage adsorption. In response to these host defense mechanisms, the adaptive mutant phages have evolved to utilize an alternative binding site located on an O-antigen site of lipopolysaccharide (LPS) through a mutation in the backup RBP ORF59. This evolutionary change enabled the phages to reinfect previously phage-resistant strains. Notably, the adaptive mutant phage PR2 carrying the ORF59 mutation Q777R, demonstrated the capacity to infect both wild-type and resistant strains, exhibiting prolonged antimicrobial activity against the wild strains. In conclusion, our findings elucidated a complex phage-host adsorption-antagonism mechanism characterized by mutation-driven alterations in phage receptor recognition. This work contributes to a deeper understanding of phage adaptability and highlights the potential for phages to combat phage-resistant bacteria through an in vitro evolutionary approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一纸空文发布了新的文献求助10
刚刚
爆米花应助nulll采纳,获得10
2秒前
2秒前
Xiaoyuan发布了新的文献求助10
3秒前
桐桐应助Marybaby采纳,获得10
4秒前
4秒前
缓慢冷安发布了新的文献求助10
5秒前
生言生语完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
迟大猫应助明芬采纳,获得10
6秒前
6秒前
科研通AI5应助cruise采纳,获得10
7秒前
7秒前
9秒前
科研通AI5应助ytx采纳,获得10
9秒前
viper3发布了新的文献求助30
10秒前
KH发布了新的文献求助10
10秒前
Michael发布了新的文献求助30
10秒前
嘉禾瑶发布了新的文献求助10
11秒前
Tanyang应助烈火采纳,获得60
12秒前
Akim应助站在牛顿头顶上采纳,获得10
12秒前
13秒前
chen完成签到,获得积分10
13秒前
jiangmin0702发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
jinx123456完成签到,获得积分10
15秒前
科研通AI5应助缓慢冷安采纳,获得10
16秒前
16秒前
16秒前
17秒前
19秒前
ytx发布了新的文献求助10
20秒前
开心岩完成签到,获得积分10
21秒前
21秒前
chen发布了新的文献求助10
22秒前
晓米发布了新的文献求助10
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490766
求助须知:如何正确求助?哪些是违规求助? 3077578
关于积分的说明 9149452
捐赠科研通 2769833
什么是DOI,文献DOI怎么找? 1519950
邀请新用户注册赠送积分活动 704398
科研通“疑难数据库(出版商)”最低求助积分说明 702166