材料科学
阴极
空位缺陷
阳极
电化学
快离子导体
杂质
离子
电解质
组态熵
化学工程
纳米技术
结晶学
电极
物理化学
热力学
化学
物理
有机化学
量子力学
工程类
作者
Xiaoping Hu,Shuquan Liang,Jiande Lin,Wen Ren,Shengqiao Fu,Zhitao Cao,Ting Zhang,Lei Zhang,Xinxin Cao
标识
DOI:10.1002/aenm.202404965
摘要
Abstract Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 cathode exhibits extensive potential for high‐power applications, owing to its large sodium ion diffusion channels, low cost, and suitable operating voltage. However, it suffers significant capacity degradation due to the inevitable NaFePO 4 impurity. Herein, a synergistic strategy is proposed that integrates high entropy doping with Fe vacancy engineering, which not only preserves the phase purity but also provides additional active sites and further stabilizes its crystal structure. A novel Na 4 Fe 2.61 (Ni, Co, Mn, Cu, Zn, Mg) 0.05 (PO 4 ) 2 P 2 O 7 cathode has been successfully synthesized by a simple sol‐gel method, which exhibits an ultralong cycle life (over 15000 cycles at 5 A g −1 ) and outstanding rate capability (61.1 mAh g⁻¹ at 10A g −1 ). Additionally, a combined solid‐solution and biphasic reaction mechanism in sodium storage process is thoroughly confirmed. Notably, benefiting from the rational design of N/P ratio and well‐matched capacitive contributions, the full cells assembled with hard carbon anodes exhibit superior cycling durability, sustaining over 1000 cycles at a high current density of 1 A g⁻¹ without severe capacity deterioration. Such highly durable full cells with low N/P ratioand common ester‐based electrolytes have never been reported before. The present work offers new perspectives to expedite the commercialization of low‐cost, high‐power‐density sodium‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI