Synergistic Configurational Entropy and Iron Vacancy Engineering in Na4Fe3(PO4)2P2O7 Cathode for High‐Power‐Density and Ultralong‐Life Na‐Ion Full Batteries

材料科学 阴极 空位缺陷 阳极 电化学 快离子导体 杂质 离子 电解质 组态熵 化学工程 纳米技术 结晶学 电极 物理化学 热力学 化学 物理 有机化学 量子力学 工程类
作者
Xiaoping Hu,Shuquan Liang,Jiande Lin,Wen Ren,Shengqiao Fu,Zhitao Cao,Ting Zhang,Lei Zhang,Xinxin Cao
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202404965
摘要

Abstract Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 cathode exhibits extensive potential for high‐power applications, owing to its large sodium ion diffusion channels, low cost, and suitable operating voltage. However, it suffers significant capacity degradation due to the inevitable NaFePO 4 impurity. Herein, a synergistic strategy is proposed that integrates high entropy doping with Fe vacancy engineering, which not only preserves the phase purity but also provides additional active sites and further stabilizes its crystal structure. A novel Na 4 Fe 2.61 (Ni, Co, Mn, Cu, Zn, Mg) 0.05 (PO 4 ) 2 P 2 O 7 cathode has been successfully synthesized by a simple sol‐gel method, which exhibits an ultralong cycle life (over 15000 cycles at 5 A g −1 ) and outstanding rate capability (61.1 mAh g⁻¹ at 10A g −1 ). Additionally, a combined solid‐solution and biphasic reaction mechanism in sodium storage process is thoroughly confirmed. Notably, benefiting from the rational design of N/P ratio and well‐matched capacitive contributions, the full cells assembled with hard carbon anodes exhibit superior cycling durability, sustaining over 1000 cycles at a high current density of 1 A g⁻¹ without severe capacity deterioration. Such highly durable full cells with low N/P ratioand common ester‐based electrolytes have never been reported before. The present work offers new perspectives to expedite the commercialization of low‐cost, high‐power‐density sodium‐ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123完成签到,获得积分10
1秒前
善良香岚发布了新的文献求助10
1秒前
2秒前
2秒前
444完成签到,获得积分10
2秒前
任一发布了新的文献求助30
2秒前
莉莉发布了新的文献求助10
3秒前
Zoe发布了新的文献求助10
3秒前
Hover完成签到,获得积分10
3秒前
自然的茉莉完成签到,获得积分10
4秒前
4秒前
Mandy完成签到,获得积分10
4秒前
5秒前
脑洞疼应助qaq采纳,获得10
5秒前
世界尽头发布了新的文献求助10
5秒前
小二郎应助科研民工采纳,获得10
5秒前
6秒前
无奈满天发布了新的文献求助10
6秒前
7秒前
MADKAI发布了新的文献求助10
7秒前
7秒前
贪玩丸子完成签到,获得积分10
7秒前
神勇的雅香应助liutaili采纳,获得10
8秒前
KSGGS完成签到,获得积分10
8秒前
YANG关注了科研通微信公众号
8秒前
9秒前
9秒前
9秒前
99发布了新的文献求助10
10秒前
10秒前
科研通AI5应助qi采纳,获得10
10秒前
乐乐发布了新的文献求助10
11秒前
铸一字错发布了新的文献求助10
11秒前
受伤书文完成签到,获得积分10
12秒前
Yvonne发布了新的文献求助10
12秒前
12秒前
温柔的十三完成签到,获得积分10
12秒前
Ll发布了新的文献求助10
13秒前
nikai发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759