Methionine-driven methylation modification overcomes plasmid-mediated high-level tigecycline resistance

替加环素 生物 质粒 蛋氨酸 甲基化 微生物学 表观遗传学 抗生素 抗生素耐药性 基因 生物化学 氨基酸
作者
Dan Fang,Tianqi Xu,Fulei Li,Yue Sun,Jingyi Sun,Yanqing Yin,Haijie Zhang,Zhiqiang Wang,Yuan Liu
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1038/s41467-024-55791-w
摘要

Tigecycline is a last-resort antibiotic to treat complicated infections caused by multidrug-resistant pathogens, while the emergence of plasmid-mediated tet(X) family severely compromises its clinical efficacy. Novel antimicrobial strategies not limited to new antibiotics in pharmaceutical pipeline are urgently needed. Herein, we reveal the metabolic disparities between tet(X)-negative and -positive E. coli, including distinct energy demand patterns under tigecycline exposure. In particular, the cysteine and methionine metabolism pathway is remarkably downregulated in tet(X)-positive bacteria. More importantly, we find that the addition of exogenous L-methionine (Met) effectively resensitizes tet(X)-positive pathogens to tigecycline. Our mechanistic analysis demonstrates that exogenous Met promotes intracellular tigecycline accumulation by upregulating bacterial proton motive force. Moreover, Met accelerates the conversion to S-adenosyl-L-methionine, an essential methyl donor, thereby enhancing 5mC methylation modification in the promoter region of tet(X4) gene and reducing its expression. Consistently, the potentiation of Met to tigecycline is abolished in tet(X4)-carrying E. coli Δdcm but restored in dcm-complementary bacteria, which encodes DNA-cytosine methyltransferase. In multiple animal models of infection, Met markedly potentiates the effectiveness of tigecycline against pathogenic E. coli and K. pneumoniae. Overall, this work highlights the therapeutic potential of Met in overcoming plasmid-mediated high-level tigecycline resistance, and provides a new paradigm to enhance antibiotic efficacy by harnessing cellular metabolic networks as well as epigenetic modifications. The dissemination of plasmid-encoded tigecycline resistance gene tet(X) poses a global threat to public health, necessitating the development of innovative strategies. Here, the authors reveal that the supplementation of L-methionine not only facilitates intracellular accumulation of tigecycline but also reduces tet(X) expression by augmenting the 5mC methylation modification in its promoter region, thereby overcoming plasmid-mediated high-level tigecycline resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风应助朴实薯片采纳,获得10
刚刚
朱光亚发布了新的文献求助10
1秒前
2秒前
joshua完成签到,获得积分10
3秒前
Stella完成签到,获得积分10
3秒前
beplayer1完成签到 ,获得积分10
3秒前
感谢吴彬转发科研通微信,获得积分50
4秒前
4秒前
4秒前
王玉河发布了新的文献求助30
5秒前
6秒前
TTTTTT发布了新的文献求助10
6秒前
感谢阿鬼鬼鬼鬼呀转发科研通微信,获得积分50
7秒前
冷静的三问完成签到,获得积分10
7秒前
wh完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
柏小霜发布了新的文献求助10
9秒前
感谢LU转发科研通微信,获得积分50
9秒前
轻舟完成签到 ,获得积分10
9秒前
10秒前
贰鸟应助claud采纳,获得10
11秒前
hjrxby发布了新的文献求助10
11秒前
感谢liwuyan转发科研通微信,获得积分50
12秒前
赘婿应助玉米排骨汤采纳,获得10
13秒前
279完成签到,获得积分10
14秒前
感谢may转发科研通微信,获得积分50
14秒前
luna完成签到,获得积分10
14秒前
15秒前
脑洞疼应助xmm采纳,获得10
15秒前
17秒前
感谢wang转发科研通微信,获得积分50
17秒前
18秒前
279发布了新的文献求助10
19秒前
感谢Sss转发科研通微信,获得积分50
20秒前
领导范儿应助vvdd采纳,获得10
20秒前
21秒前
Hello应助无限的绮南采纳,获得10
21秒前
晨曦完成签到 ,获得积分10
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488940
求助须知:如何正确求助?哪些是违规求助? 3076437
关于积分的说明 9145315
捐赠科研通 2768689
什么是DOI,文献DOI怎么找? 1519340
邀请新用户注册赠送积分活动 703765
科研通“疑难数据库(出版商)”最低求助积分说明 702009