High-resolution national radon maps based on massive indoor measurements in the United States

遥感 高分辨率 环境科学 分辨率(逻辑) 地理 气象学 计算机科学 物理 人工智能 核物理学
作者
Longxiang Li,Brent A. Coull,Carolina L. Zilli Vieira,Petros Koutrakis
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (3)
标识
DOI:10.1073/pnas.2408084121
摘要

Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations. Tens of millions of radon measurements have been conducted as parts of property inspections in the past two decades, making it possible for us to improve the national radon map. We compiled a national database of over 6 million radon measurements conducted by independent laboratories during 2001 to 2021. A random forest model was built to predict monthly community-level radon concentrations based on nearly 200 geological, meteorological, architectural, and socioeconomical factors. Our radon map can accurately show the distribution of radon at higher spatial and temporal resolutions. We observed slight decreases in average radon concentrations in high-radon regions during the study period. But over 83 million people are living in residences with radon concentrations at screening floor over 148 Bq/m3 (the recommended action level). Most of these residences are in low-radon zones, highlighting the need for comprehensive radon surveys. The high-resolution radon maps can be used by federal and local governments to design, update, and improve the regulations. Furthermore, the model can be used to assess residential exposure to radon, thus facilitating studies to expand our understanding of radon's health effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123完成签到 ,获得积分10
刚刚
平淡的乐曲完成签到,获得积分20
1秒前
4秒前
5秒前
阳光萌萌完成签到,获得积分10
6秒前
6秒前
nku_xjli应助超爱蛋炒饭采纳,获得10
7秒前
8秒前
信江书院发布了新的文献求助20
10秒前
Celestine完成签到,获得积分10
10秒前
keer发布了新的文献求助10
10秒前
SciGPT应助斑比采纳,获得10
12秒前
11发布了新的文献求助10
12秒前
共享精神应助震动的听枫采纳,获得10
14秒前
小绵羊发布了新的文献求助10
17秒前
华仔应助称心冰枫采纳,获得10
17秒前
18秒前
18秒前
赘婿应助wsgdhz采纳,获得10
19秒前
wanci应助KUlianshu采纳,获得10
19秒前
xia应助心动nofear采纳,获得10
22秒前
23秒前
23秒前
weiyichen发布了新的文献求助10
24秒前
难过戎发布了新的文献求助10
24秒前
香蕉觅云应助元宝采纳,获得10
24秒前
ddcd完成签到,获得积分10
25秒前
传奇3应助nuan77采纳,获得10
25秒前
云天明应助如梦如画采纳,获得10
26秒前
qtr完成签到 ,获得积分10
26秒前
小二郎应助xiw采纳,获得10
27秒前
巫曼柔完成签到,获得积分10
27秒前
Jiang发布了新的文献求助10
28秒前
28秒前
1Yer6发布了新的文献求助10
28秒前
29秒前
29秒前
大佬求带完成签到,获得积分10
29秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351960
求助须知:如何正确求助?哪些是违规求助? 2977282
关于积分的说明 8678669
捐赠科研通 2658284
什么是DOI,文献DOI怎么找? 1455643
科研通“疑难数据库(出版商)”最低求助积分说明 674014
邀请新用户注册赠送积分活动 664557