亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-resolution national radon maps based on massive indoor measurements in the United States

遥感 高分辨率 环境科学 分辨率(逻辑) 地理 气象学 计算机科学 物理 人工智能 核物理学
作者
Longxiang Li,Brent A. Coull,Carolina L. Zilli Vieira,Petros Koutrakis
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (3)
标识
DOI:10.1073/pnas.2408084121
摘要

Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations. Tens of millions of radon measurements have been conducted as parts of property inspections in the past two decades, making it possible for us to improve the national radon map. We compiled a national database of over 6 million radon measurements conducted by independent laboratories during 2001 to 2021. A random forest model was built to predict monthly community-level radon concentrations based on nearly 200 geological, meteorological, architectural, and socioeconomical factors. Our radon map can accurately show the distribution of radon at higher spatial and temporal resolutions. We observed slight decreases in average radon concentrations in high-radon regions during the study period. But over 83 million people are living in residences with radon concentrations at screening floor over 148 Bq/m3 (the recommended action level). Most of these residences are in low-radon zones, highlighting the need for comprehensive radon surveys. The high-resolution radon maps can be used by federal and local governments to design, update, and improve the regulations. Furthermore, the model can be used to assess residential exposure to radon, thus facilitating studies to expand our understanding of radon's health effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
aobadong发布了新的文献求助10
11秒前
zho关闭了zho文献求助
16秒前
aobadong完成签到,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
21秒前
23秒前
25秒前
爆米花应助pups采纳,获得10
42秒前
量子星尘发布了新的文献求助10
47秒前
yb完成签到,获得积分10
55秒前
甜青提完成签到,获得积分10
1分钟前
weibo完成签到,获得积分10
1分钟前
1分钟前
wang发布了新的文献求助10
1分钟前
1分钟前
风中的雪发布了新的文献求助10
1分钟前
cxm发布了新的文献求助10
1分钟前
风中的雪完成签到,获得积分10
1分钟前
凡人完成签到 ,获得积分10
1分钟前
1分钟前
will完成签到,获得积分10
2分钟前
星辰大海应助沫雨采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
乐乐应助andrele采纳,获得10
2分钟前
科研通AI6应助zznzn采纳,获得10
2分钟前
2分钟前
2分钟前
沫雨发布了新的文献求助10
2分钟前
史前巨怪完成签到,获得积分0
3分钟前
3分钟前
落沧发布了新的文献求助10
3分钟前
晚街听风完成签到 ,获得积分10
3分钟前
zho发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911434
关于积分的说明 15134190
捐赠科研通 4829942
什么是DOI,文献DOI怎么找? 2586543
邀请新用户注册赠送积分活动 1540204
关于科研通互助平台的介绍 1498392