Multimodal Convolutional Neural Networks for the Prediction of Acute Kidney Injury in the Intensive Care

卷积神经网络 急性肾损伤 计算机科学 重症监护 医疗急救 医学 人工智能 重症监护医学 急诊医学 内科学
作者
R van Slobbe,Drahomíra Herrmannová,D J Boeke,Elia Lima-Walton,Ameen Abu‐Hanna,Iacopo Vagliano
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:196: 105815-105815
标识
DOI:10.1016/j.ijmedinf.2025.105815
摘要

Increased monitoring of health-related data for ICU patients holds great potential for the early prediction of medical outcomes. Research on whether the use of clinical notes and concepts from knowledge bases can improve the performance of prediction models is limited. We investigated the effects of combining clinical variables, clinical notes, and clinical concepts. We focus on the early prediction of Acute Kidney Injury (AKI) in the intensive care unit (ICU). AKI is a sudden reduction in kidney function measured by increased serum creatinine (SCr) or decreased urine output. AKI may occur in up to 30% of ICU stays. We developed three models based on convolutional neural networks using data from the Medical Information Mart for Intensive Care (MIMIC) database. The models used clinical variables, free-text notes, and concepts from the Elsevier H-Graph. Our models achieved good predictive performance (AUROC 0.73-0.90). These models were assessed both when using Scr and urine output as predictors and when omitting them. When Scr and urine output were used as predictors, models that included clinical notes and concepts together with clinical variables performed on par with models that only used clinical variables. When excluding SCr and urine output, predictive performance improved by combining multiple modalities. The models that used only clinical variables were externally validated on the eICU dataset and transported fairly to the new population (AUROC 0.68-0.77). Our in-depth comparison of modalities and text representations may further guide researchers and practitioners in applying multimodal models for predicting AKI and inspire them to investigate multimodality and contextualized embeddings for other tasks. Our models can support clinicians to promptly recognize and treat deteriorating AKI patients and may improve patient outcomes in the ICU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果小蕾发布了新的文献求助10
刚刚
慕青应助包容的以彤采纳,获得10
1秒前
郑志钢发布了新的文献求助10
2秒前
3秒前
Surpass完成签到,获得积分10
3秒前
4秒前
4秒前
xiaoqin完成签到,获得积分10
4秒前
5秒前
5秒前
popooo完成签到,获得积分10
5秒前
婕婕子完成签到,获得积分10
5秒前
5秒前
6秒前
滴滴答答完成签到 ,获得积分10
6秒前
6秒前
alaxin发布了新的文献求助10
6秒前
7秒前
李子发布了新的文献求助10
8秒前
似月白完成签到,获得积分20
8秒前
apollo2002发布了新的文献求助10
9秒前
琉璃岁月发布了新的文献求助10
9秒前
Sadgenius发布了新的文献求助10
9秒前
9秒前
zzt发布了新的文献求助10
10秒前
zz发布了新的文献求助10
11秒前
似月白发布了新的文献求助10
11秒前
cxy发布了新的文献求助10
12秒前
LaTeXer应助美好斓采纳,获得30
12秒前
13秒前
13秒前
顾矜应助鹤九采纳,获得10
14秒前
15秒前
神仙师姐应助巫马荧采纳,获得10
15秒前
Thea完成签到 ,获得积分10
16秒前
16秒前
香蕉觅云应助发嗲的戎采纳,获得10
16秒前
琉璃岁月完成签到,获得积分10
17秒前
小二郎应助apollo2002采纳,获得10
18秒前
alaxin完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992393
求助须知:如何正确求助?哪些是违规求助? 3533397
关于积分的说明 11262186
捐赠科研通 3272927
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882792
科研通“疑难数据库(出版商)”最低求助积分说明 809474