已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal Convolutional Neural Networks for the Prediction of Acute Kidney Injury in the Intensive Care

卷积神经网络 急性肾损伤 计算机科学 重症监护 医疗急救 医学 人工智能 重症监护医学 急诊医学 内科学
作者
R van Slobbe,Drahomíra Herrmannová,D J Boeke,Elia Lima-Walton,Ameen Abu‐Hanna,Iacopo Vagliano
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:196: 105815-105815
标识
DOI:10.1016/j.ijmedinf.2025.105815
摘要

Increased monitoring of health-related data for ICU patients holds great potential for the early prediction of medical outcomes. Research on whether the use of clinical notes and concepts from knowledge bases can improve the performance of prediction models is limited. We investigated the effects of combining clinical variables, clinical notes, and clinical concepts. We focus on the early prediction of Acute Kidney Injury (AKI) in the intensive care unit (ICU). AKI is a sudden reduction in kidney function measured by increased serum creatinine (SCr) or decreased urine output. AKI may occur in up to 30% of ICU stays. We developed three models based on convolutional neural networks using data from the Medical Information Mart for Intensive Care (MIMIC) database. The models used clinical variables, free-text notes, and concepts from the Elsevier H-Graph. Our models achieved good predictive performance (AUROC 0.73-0.90). These models were assessed both when using Scr and urine output as predictors and when omitting them. When Scr and urine output were used as predictors, models that included clinical notes and concepts together with clinical variables performed on par with models that only used clinical variables. When excluding SCr and urine output, predictive performance improved by combining multiple modalities. The models that used only clinical variables were externally validated on the eICU dataset and transported fairly to the new population (AUROC 0.68-0.77). Our in-depth comparison of modalities and text representations may further guide researchers and practitioners in applying multimodal models for predicting AKI and inspire them to investigate multimodality and contextualized embeddings for other tasks. Our models can support clinicians to promptly recognize and treat deteriorating AKI patients and may improve patient outcomes in the ICU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
cc发布了新的文献求助10
4秒前
cc应助栗树采纳,获得30
5秒前
EternalStrider完成签到,获得积分10
6秒前
Lidocaine完成签到,获得积分10
6秒前
7秒前
追风少年发布了新的文献求助10
7秒前
上官若男应助刘雄丽采纳,获得10
8秒前
8秒前
克劳修斯完成签到 ,获得积分10
9秒前
烟花应助wlei采纳,获得10
9秒前
哈比人linling完成签到,获得积分10
11秒前
山野有雾都完成签到 ,获得积分20
13秒前
Zxc发布了新的文献求助10
13秒前
大模型应助萱萱采纳,获得10
15秒前
Zxc完成签到,获得积分10
18秒前
在水一方应助Wenyilong采纳,获得10
19秒前
姚姚完成签到 ,获得积分10
19秒前
小碗完成签到 ,获得积分0
20秒前
kw98完成签到 ,获得积分10
21秒前
彭于晏应助Fiona采纳,获得10
21秒前
宁地啊完成签到 ,获得积分10
22秒前
Swear完成签到 ,获得积分10
22秒前
英姑应助undertaker采纳,获得10
24秒前
24秒前
大碗完成签到 ,获得积分10
24秒前
yalbe完成签到 ,获得积分10
25秒前
科目三应助纯真沛儿采纳,获得10
25秒前
刘雄丽发布了新的文献求助10
27秒前
顺利晓蓝完成签到,获得积分10
27秒前
28秒前
undertaker发布了新的文献求助10
30秒前
31秒前
etzel发布了新的文献求助10
33秒前
Aman完成签到,获得积分10
34秒前
小蘑菇应助yjx采纳,获得10
34秒前
35秒前
嗯嗯完成签到 ,获得积分10
35秒前
wqa1472完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253138
求助须知:如何正确求助?哪些是违规求助? 4416657
关于积分的说明 13750270
捐赠科研通 4288890
什么是DOI,文献DOI怎么找? 2353183
邀请新用户注册赠送积分活动 1349892
关于科研通互助平台的介绍 1309642