Pair-Soil-Spectra: An Approach for NIRS-Based Soil Total Nitrogen Content Detection with Feature Metrics in Cases of Small Sample Sizes

偏最小二乘回归 马氏距离 土工试验 化学 特征(语言学) 公制(单位) 土壤科学 模式识别(心理学) 随机森林 样品(材料) 人工智能 统计 土壤水分 计算机科学 数学 环境科学 哲学 经济 色谱法 语言学 运营管理
作者
Yueting Wang,Chunjiang Zhao,Zhen Xing,Mingyan Zhu,Liangliang Hao,Ke Wang,Jin Bai,Hongwu Tian,Daming Dong
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c04548
摘要

Soil total nitrogen (STN) plays an important role in plant growth, and rapid and nondestructive detection of STN content is essential for agricultural production. Near-infrared spectroscopy (NIRS) takes advantage of the fast detection speed, low cost, and nondestructiveness, and it can be used for STN content detection. Typically, NIRS-based approaches require a large number of samples for detection model training. However, it is difficult to collect sufficient samples due to various causes (e.g., time-varying state, high assay costs, etc.) in practical application. To tackle this problem, a feature metric approach is introduced to detect the STN content based on NIRS in this work, and a new approach (named Pair-Soil-Spectra) is proposed to mine fine-grained features by contrasting different soil sample pairs, which takes full advantage of soil particle heterogeneity and NIRS penetration. For the validation of this study, three different soil datasets with various collection sources are selected as research subjects, and the performance of Pair-Soil-Spectra is analyzed from different perspectives. According to the results, Pair-Soil-Spectra has significantly improved the performance of STN content detection models (e.g., partial least-squares (PLS), Cubist, extreme learning machine (ELM), and random forest (RF)) in small sample cases. Of these, the coefficient of determination of RF has improved by 0.13, 0.42, and 0.10, and the root-mean-square of prediction has decreased by 0.15, 0.52, and 0.01 g/kg with different datasets, which has gained the greatest improvement. Meanwhile, this approach can be easily expanded to cover other domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助马听云采纳,获得10
刚刚
FashionBoy应助wangjue采纳,获得10
2秒前
2秒前
2秒前
温超发布了新的文献求助20
2秒前
3秒前
和谐烨霖完成签到,获得积分10
3秒前
lilongcheng发布了新的文献求助10
4秒前
hhh发布了新的文献求助10
6秒前
anneke_完成签到,获得积分10
6秒前
Fan_完成签到,获得积分20
7秒前
7秒前
桐桐应助Mine采纳,获得10
7秒前
ly发布了新的文献求助10
7秒前
打打应助温超采纳,获得10
8秒前
jiojio完成签到,获得积分10
9秒前
刘爽完成签到,获得积分10
9秒前
9秒前
传奇3应助lee采纳,获得10
10秒前
Ethan发布了新的文献求助20
10秒前
ALONE发布了新的文献求助10
12秒前
在水一方应助笑尽往事采纳,获得10
13秒前
lilongcheng完成签到,获得积分10
13秒前
13秒前
13秒前
酷波er应助怎么会这样呢采纳,获得10
14秒前
14秒前
高高应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
15秒前
别管我了应助科研通管家采纳,获得30
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
15秒前
今后应助科研通管家采纳,获得10
15秒前
15秒前
una完成签到 ,获得积分10
15秒前
16秒前
wangjue发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951271
求助须知:如何正确求助?哪些是违规求助? 3496677
关于积分的说明 11083785
捐赠科研通 3227103
什么是DOI,文献DOI怎么找? 1784263
邀请新用户注册赠送积分活动 868293
科研通“疑难数据库(出版商)”最低求助积分说明 801102