Pair-Soil-Spectra: An Approach for NIRS-Based Soil Total Nitrogen Content Detection with Feature Metrics in Cases of Small Sample Sizes

偏最小二乘回归 马氏距离 土工试验 化学 特征(语言学) 公制(单位) 土壤科学 模式识别(心理学) 随机森林 样品(材料) 人工智能 统计 土壤水分 计算机科学 数学 环境科学 语言学 哲学 运营管理 经济 色谱法
作者
Yueting Wang,Chunjiang Zhao,Zhen Xing,Mingyan Zhu,Liangliang Hao,Ke Wang,J. Bai,Hongwu Tian,Daming Dong
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c04548
摘要

Soil total nitrogen (STN) plays an important role in plant growth, and rapid and nondestructive detection of STN content is essential for agricultural production. Near-infrared spectroscopy (NIRS) takes advantage of the fast detection speed, low cost, and nondestructiveness, and it can be used for STN content detection. Typically, NIRS-based approaches require a large number of samples for detection model training. However, it is difficult to collect sufficient samples due to various causes (e.g., time-varying state, high assay costs, etc.) in practical application. To tackle this problem, a feature metric approach is introduced to detect the STN content based on NIRS in this work, and a new approach (named Pair-Soil-Spectra) is proposed to mine fine-grained features by contrasting different soil sample pairs, which takes full advantage of soil particle heterogeneity and NIRS penetration. For the validation of this study, three different soil datasets with various collection sources are selected as research subjects, and the performance of Pair-Soil-Spectra is analyzed from different perspectives. According to the results, Pair-Soil-Spectra has significantly improved the performance of STN content detection models (e.g., partial least-squares (PLS), Cubist, extreme learning machine (ELM), and random forest (RF)) in small sample cases. Of these, the coefficient of determination of RF has improved by 0.13, 0.42, and 0.10, and the root-mean-square of prediction has decreased by 0.15, 0.52, and 0.01 g/kg with different datasets, which has gained the greatest improvement. Meanwhile, this approach can be easily expanded to cover other domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧伤的井发布了新的文献求助10
1秒前
2秒前
make217完成签到 ,获得积分10
2秒前
online1881完成签到,获得积分10
5秒前
多情小熊猫完成签到,获得积分10
7秒前
小菜完成签到 ,获得积分10
8秒前
lay完成签到,获得积分10
10秒前
NexusExplorer应助ww采纳,获得10
10秒前
陆柒捌完成签到,获得积分10
11秒前
李菲完成签到,获得积分20
11秒前
斯文败类应助csh_uyu采纳,获得10
12秒前
lMiraclel完成签到,获得积分20
13秒前
仿生躯壳完成签到,获得积分10
14秒前
14秒前
FLY完成签到,获得积分10
15秒前
16秒前
9702完成签到 ,获得积分10
17秒前
18秒前
古铜完成签到 ,获得积分10
19秒前
科研通AI2S应助wanghua采纳,获得10
20秒前
21秒前
21秒前
21秒前
kk关闭了kk文献求助
22秒前
王明磊发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
兴尽晚回舟完成签到 ,获得积分10
23秒前
TGH发布了新的文献求助10
23秒前
25秒前
大力发布了新的文献求助10
26秒前
sibo完成签到,获得积分10
26秒前
FashionBoy应助胖胖龙采纳,获得10
26秒前
洪山老狗发布了新的文献求助10
26秒前
26秒前
ww发布了新的文献求助10
27秒前
library2025应助flyia采纳,获得80
27秒前
暮光之城完成签到,获得积分10
28秒前
Vicney完成签到,获得积分10
28秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
SAS, Python and R: A Cross-Reference Guide for Data Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386059
求助须知:如何正确求助?哪些是违规求助? 2999328
关于积分的说明 8784622
捐赠科研通 2685066
什么是DOI,文献DOI怎么找? 1470817
科研通“疑难数据库(出版商)”最低求助积分说明 679970
邀请新用户注册赠送积分活动 672467