清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A nomogram for predicting cancer-specific survival in patients with locally advanced unresectable esophageal cancer: development and validation study

列线图 医学 肿瘤科 比例危险模型 AJCC分段系统 内科学 队列 阶段(地层学) TNM分期系统 癌症 接收机工作特性 一致性 食管癌 放射治疗 生存分析 肿瘤分期 登台系统 古生物学 生物
作者
Liangyun Xie,Yafei Zhang,Xiedong Niu,Xiaomei Jiang,Yuan Kang,Xinyue Diao,J. Fang,Yi-Lin Yu,Jun Yao
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fimmu.2025.1524439
摘要

Background Immunotherapy research for esophageal cancer is progressing rapidly, particularly for locally advanced unresectable cases. Despite these advances, the prognosis remains poor, and traditional staging systems like AJCC inadequately predict outcomes. This study aims to develop and validate a nomogram to predict cancer-specific survival (CSS) in these patients. Methods Clinicopathological and survival data for patients diagnosed between 2010 and 2021 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Patients were divided into a training cohort (70%) and a validation cohort (30%). Prognostic factors were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) regression. A nomogram was constructed based on the training cohort and evaluated using the concordance index (C-index), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration plots, and area under the receiver operating characteristic curve (AUC). Kaplan-Meier survival curves were used to validate the prognostic factors. Results The study included 4,258 patients, and LASSO-Cox regression identified 10 prognostic factors: age, marital status, tumor location, tumor size, pathological grade, T stage, American Joint Committee on Cancer (AJCC) stage, SEER stage, chemotherapy, and radiotherapy. The nomogram achieved a C-index of 0.660 (training set) and 0.653 (validation set), and 1-, 3-, and 5-year AUC values exceeded 0.65. Calibration curves showed a good fit, and decision curve analysis (DCA), IDI, and NRI indicated that the nomogram outperformed traditional AJCC staging in predicting prognosis. Conclusions We developed and validated an effective nomogram model for predicting CSS in patients with locally advanced unresectable esophageal cancer. This model demonstrated significantly superior predictive performance compared to the traditional AJCC staging system. Future research should focus on integrating emerging biomarkers, such as PD-L1 expression and tumor mutational burden (TMB), into prognostic models to enhance their predictive accuracy and adapt to the evolving landscape of immunotherapy in esophageal cancer management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安颜演发布了新的文献求助10
1秒前
x银河里完成签到 ,获得积分10
4秒前
lalala完成签到 ,获得积分10
15秒前
Rosaline完成签到 ,获得积分10
20秒前
科研狗完成签到 ,获得积分10
28秒前
迟大猫应助白华苍松采纳,获得10
41秒前
lielizabeth完成签到 ,获得积分0
44秒前
qhdsyxy完成签到 ,获得积分0
56秒前
1分钟前
guoxihan完成签到,获得积分10
1分钟前
俊逸的白梦完成签到 ,获得积分0
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
qx发布了新的文献求助10
1分钟前
song完成签到 ,获得积分10
1分钟前
qx完成签到,获得积分10
1分钟前
单小芫完成签到 ,获得积分10
1分钟前
小白白白完成签到 ,获得积分10
2分钟前
明亮梦山完成签到 ,获得积分10
2分钟前
2分钟前
SCI的芷蝶完成签到 ,获得积分10
2分钟前
忧伤的慕梅完成签到 ,获得积分10
2分钟前
我和你完成签到 ,获得积分10
2分钟前
东十八完成签到 ,获得积分10
2分钟前
颜陌完成签到,获得积分10
2分钟前
迷尘ing完成签到,获得积分10
2分钟前
2分钟前
迷尘ing发布了新的文献求助10
2分钟前
2分钟前
yellowonion完成签到 ,获得积分10
2分钟前
刘丰完成签到 ,获得积分10
2分钟前
然大宝发布了新的文献求助10
2分钟前
木南大宝完成签到 ,获得积分10
2分钟前
2分钟前
老冯完成签到 ,获得积分10
2分钟前
夜空的光芒完成签到 ,获得积分10
3分钟前
煜琪发布了新的文献求助10
3分钟前
changfox完成签到,获得积分10
3分钟前
闪闪小小完成签到 ,获得积分10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539114
求助须知:如何正确求助?哪些是违规求助? 3116731
关于积分的说明 9326595
捐赠科研通 2814659
什么是DOI,文献DOI怎么找? 1547002
邀请新用户注册赠送积分活动 720722
科研通“疑难数据库(出版商)”最低求助积分说明 712192