Self‐Assembled Monolayer in Hybrid Quasi‐Solid Electrolyte Enables Boosted Interface Stability and Ion Conduction

电解质 离子电导率 电导率 化学物理 单层 离子键合 材料科学 热传导 化学工程 溶剂化 快离子导体 离子 化学 纳米技术 物理化学 电极 有机化学 工程类 复合材料
作者
Wenyi Ma,Yuxiang Guo,Junqiang Sun,Chenyi Zhang,Yuwen Zhu,Hengda Sun,Liqiang Huang,Zuming Hu,Hongzhi Wang,Meifang Zhu,Gang Wang
出处
期刊:Angewandte Chemie [Wiley]
被引量:7
标识
DOI:10.1002/anie.202418999
摘要

Complex interactions between the inorganic solid electrolyte (ISE) and the liquid electrolyte (LE) give rise to challenges of achieving durable interface stability in hybrid quasi‐solid electrolytes (HQSE), and the influence on the involved ISE surface ionic conductivity also needs to be investigated. Here, 4‐chlorobenzenesulfonic acid (CBSA) is utilized to establish a self‐assembled monolayer (SAM) on the surface of Li6.4La3Zr1.4Ta0.6O12 (LLZTO), which is then incorporated into PEGDA‐based in‐situ polymerized HQSE. The results show that the introduction of CBSA significantly improves the LLZTO/LE interface stability with the optimized solvation structure, resulting in a favorable ionic conductivity (1.19 mS cm‐1) and an increasing Li+ transference number (0.647). Mechanisms for the promotion of ionic conduction and interfacial stability of SAM‐HQSE are unveiled through the density functional theory (DFT) combined with Raman spectra and 7Li solid‐state nuclear‐magnetic‐resonance. There are no short‐circuits in the Li|SAM‐HQSE|Li cells after 1000 h. The Li|SAM‐HQSE|LFP cells or Graphite|SAM‐HQSE|LFP pouch cells respectively achieve the capacity retention of 91.2% and 87.0% with the 0.5.C‐rate for 500 and 300 cycles. This facile and effective strategy proposed in this work make it accessible for constructing the stable surface micro‐environments of LLZTO where boost and homogenize the Li+ conduction in a hybrid quasi‐solid electrolyte system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
纪间发布了新的文献求助10
1秒前
syx完成签到,获得积分10
1秒前
王丽娟完成签到,获得积分10
1秒前
2秒前
善学以致用应助aimad采纳,获得10
2秒前
2秒前
galioo3000发布了新的文献求助10
3秒前
百甲完成签到,获得积分10
3秒前
cathylll完成签到,获得积分10
3秒前
小小发布了新的文献求助10
3秒前
4秒前
清秀语梦完成签到,获得积分10
4秒前
zyp1229完成签到,获得积分10
4秒前
Liu发布了新的文献求助10
5秒前
5秒前
5秒前
无花果应助struggling2026采纳,获得10
6秒前
6秒前
耕牛热发布了新的文献求助10
6秒前
6秒前
背后白梦发布了新的文献求助80
6秒前
鱼刺鱼刺卡完成签到,获得积分10
6秒前
星星完成签到,获得积分10
6秒前
chenshi0515完成签到 ,获得积分10
7秒前
7秒前
田攀发布了新的文献求助10
8秒前
8秒前
coolman冰人完成签到,获得积分20
8秒前
8秒前
华仔应助徐志豪采纳,获得10
9秒前
什么也难不倒我完成签到 ,获得积分10
9秒前
千里发布了新的文献求助10
9秒前
俊、、完成签到,获得积分10
10秒前
11秒前
11秒前
清秀语梦发布了新的文献求助10
11秒前
传奇3应助冲冲冲采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285