电解质
离子电导率
电导率
化学物理
单层
离子键合
材料科学
热传导
化学工程
溶剂化
快离子导体
离子
化学
纳米技术
物理化学
电极
有机化学
工程类
复合材料
作者
Wenyi Ma,Yuxiang Guo,Junqiang Sun,Chenyi Zhang,Yuwen Zhu,Hengda Sun,Liqiang Huang,Zuming Hu,Hongzhi Wang,Meifang Zhu,Wei Wang
标识
DOI:10.1002/anie.202418999
摘要
Complex interactions between the inorganic solid electrolyte (ISE) and the liquid electrolyte (LE) give rise to challenges of achieving durable interface stability in hybrid quasi‐solid electrolytes (HQSE), and the influence on the involved ISE surface ionic conductivity also needs to be investigated. Here, 4‐chlorobenzenesulfonic acid (CBSA) is utilized to establish a self‐assembled monolayer (SAM) on the surface of Li6.4La3Zr1.4Ta0.6O12 (LLZTO), which is then incorporated into PEGDA‐based in‐situ polymerized HQSE. The results show that the introduction of CBSA significantly improves the LLZTO/LE interface stability with the optimized solvation structure, resulting in a favorable ionic conductivity (1.19 mS cm‐1) and an increasing Li+ transference number (0.647). Mechanisms for the promotion of ionic conduction and interfacial stability of SAM‐HQSE are unveiled through the density functional theory (DFT) combined with Raman spectra and 7Li solid‐state nuclear‐magnetic‐resonance. There are no short‐circuits in the Li|SAM‐HQSE|Li cells after 1000 h. The Li|SAM‐HQSE|LFP cells or Graphite|SAM‐HQSE|LFP pouch cells respectively achieve the capacity retention of 91.2% and 87.0% with the 0.5.C‐rate for 500 and 300 cycles. This facile and effective strategy proposed in this work make it accessible for constructing the stable surface micro‐environments of LLZTO where boost and homogenize the Li+ conduction in a hybrid quasi‐solid electrolyte system.
科研通智能强力驱动
Strongly Powered by AbleSci AI