Self‐Assembled Monolayer in Hybrid Quasi‐Solid Electrolyte Enables Boosted Interface Stability and Ion Conduction

电解质 离子电导率 电导率 化学物理 单层 离子键合 材料科学 热传导 化学工程 溶剂化 快离子导体 离子 化学 纳米技术 物理化学 电极 有机化学 工程类 复合材料
作者
Wenyi Ma,Yuxiang Guo,Junqiang Sun,Chenyi Zhang,Yuwen Zhu,Hengda Sun,Liqiang Huang,Zuming Hu,Hongzhi Wang,Meifang Zhu,Gang Wang
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202418999
摘要

Complex interactions between the inorganic solid electrolyte (ISE) and the liquid electrolyte (LE) give rise to challenges of achieving durable interface stability in hybrid quasi‐solid electrolytes (HQSE), and the influence on the involved ISE surface ionic conductivity also needs to be investigated. Here, 4‐chlorobenzenesulfonic acid (CBSA) is utilized to establish a self‐assembled monolayer (SAM) on the surface of Li6.4La3Zr1.4Ta0.6O12 (LLZTO), which is then incorporated into PEGDA‐based in‐situ polymerized HQSE. The results show that the introduction of CBSA significantly improves the LLZTO/LE interface stability with the optimized solvation structure, resulting in a favorable ionic conductivity (1.19 mS cm‐1) and an increasing Li+ transference number (0.647). Mechanisms for the promotion of ionic conduction and interfacial stability of SAM‐HQSE are unveiled through the density functional theory (DFT) combined with Raman spectra and 7Li solid‐state nuclear‐magnetic‐resonance. There are no short‐circuits in the Li|SAM‐HQSE|Li cells after 1000 h. The Li|SAM‐HQSE|LFP cells or Graphite|SAM‐HQSE|LFP pouch cells respectively achieve the capacity retention of 91.2% and 87.0% with the 0.5.C‐rate for 500 and 300 cycles. This facile and effective strategy proposed in this work make it accessible for constructing the stable surface micro‐environments of LLZTO where boost and homogenize the Li+ conduction in a hybrid quasi‐solid electrolyte system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mysci完成签到,获得积分10
1秒前
2秒前
Quzhengkai发布了新的文献求助10
3秒前
3秒前
4秒前
落寞晓灵完成签到,获得积分10
4秒前
ORAzzz应助翠翠采纳,获得20
5秒前
zoe完成签到,获得积分10
5秒前
习习应助学术小白采纳,获得10
5秒前
6秒前
7秒前
tianny关注了科研通微信公众号
8秒前
8秒前
CO2发布了新的文献求助10
8秒前
桐桐应助zhangscience采纳,获得10
9秒前
求助发布了新的文献求助10
10秒前
buno应助zoe采纳,获得10
11秒前
junzilan发布了新的文献求助10
11秒前
11秒前
细品岁月完成签到 ,获得积分10
11秒前
细心书蕾完成签到 ,获得积分10
12秒前
无花果应助l11x29采纳,获得10
14秒前
14秒前
老詹头发布了新的文献求助10
14秒前
思源应助叫滚滚采纳,获得10
15秒前
16秒前
刘歌完成签到 ,获得积分10
16秒前
阿巡完成签到,获得积分10
16秒前
Chen完成签到,获得积分10
18秒前
LSH970829发布了新的文献求助10
18秒前
哈哈哈完成签到 ,获得积分10
19秒前
汤姆完成签到,获得积分10
19秒前
21秒前
21秒前
翠翠完成签到,获得积分10
22秒前
22秒前
LSH970829完成签到,获得积分10
23秒前
Lyg完成签到,获得积分20
24秒前
坚强的樱发布了新的文献求助10
24秒前
baodingning完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808