A Unified Accelerator for All-in-One Image Restoration Based on Prompt Degradation Learning

降级(电信) 图像复原 计算机科学 图像(数学) 人工智能 电子工程 图像处理 工程类 电信
作者
Siyu Zhang,Qiwei Dong,Wendong Mao,Zhongfeng Wang
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tcsi.2024.3519532
摘要

All-in-one image restoration (IR) recovers images from various unknown distortions by a single model, such as rain, haze, and blur. Transformer-based IR methods have significantly improved the visual effects of the restored images. However, deploying complex IR models on edge devices is challenging due to massive parameters and intensive computations. Moreover, existing accelerators are typically customized for a single task, resulting in severe resource underutilization when executing multiple tasks. Therefore, this paper develops an algorithm-hardware co-design framework to accelerate a novel CNN-Transformer cooperative model for multiple IR tasks. Firstly, on the algorithm level, an Efficient Restoration Foundational Model (ERFM) is proposed to recover corrupted images from various degradations with low model complexity. Secondly, to guide adaptive corruption removal, a novel prompt learning scheme is introduced to fuse context-related degradation cues and boost high-quality reconstruction. Thirdly, on the hardware level, an integer approximation method is proposed to avoid expensive hardware overhead caused by complex nonlinear operations, such as layer normalization and softmax while maintaining comparable IR quality. Moreover, a head stationary dataflow and softmax fusion mechanism are designed to reduce data movement and enhance on-chip resource utilization. Finally, an overall hardware architecture is developed and implemented in TSMC 28 nm CMOS technology. Experimental results show that our ERFM achieves better visual perception than other baselines on seven challenging IR tasks without task-specific fine-tuning. Moreover, compared to other accelerators for vision Transformers, our design can achieve 3.3 $\times$ and 3.7 $\times$ improvements in throughput and energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕课魔芋发布了新的文献求助10
1秒前
钱多多完成签到,获得积分10
1秒前
小景007完成签到,获得积分10
1秒前
1秒前
Orange应助无心的复天采纳,获得10
1秒前
赖问筠发布了新的文献求助30
2秒前
3秒前
阿白发布了新的文献求助10
3秒前
Zhou完成签到,获得积分10
4秒前
钱多多发布了新的文献求助10
5秒前
Akim应助CEJ采纳,获得10
5秒前
5秒前
张玉龙发布了新的文献求助10
6秒前
毛豆爸爸应助机灵的如柏采纳,获得10
8秒前
科研通AI2S应助文静三颜采纳,获得10
9秒前
10秒前
畅快访旋应助慕课魔芋采纳,获得10
10秒前
幸福大白发布了新的文献求助10
10秒前
11秒前
乐生发布了新的文献求助10
11秒前
舒心的青槐完成签到,获得积分10
12秒前
yy发布了新的文献求助10
13秒前
欢喜的火龙果完成签到,获得积分10
13秒前
yyi1应助陈皮糖不酸采纳,获得10
13秒前
15秒前
15秒前
16秒前
幸福大白完成签到,获得积分10
16秒前
赖问筠完成签到 ,获得积分10
16秒前
17秒前
灵巧一斩完成签到,获得积分10
17秒前
楚狂接舆发布了新的文献求助10
17秒前
奔奔完成签到,获得积分10
17秒前
21秒前
乐生完成签到,获得积分10
21秒前
DE2022完成签到,获得积分10
22秒前
活泼平凡关注了科研通微信公众号
22秒前
22秒前
科目三应助油2采纳,获得10
23秒前
CipherSage应助甜蜜的无声采纳,获得10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330025
求助须知:如何正确求助?哪些是违规求助? 2959638
关于积分的说明 8596158
捐赠科研通 2637996
什么是DOI,文献DOI怎么找? 1444096
科研通“疑难数据库(出版商)”最低求助积分说明 668934
邀请新用户注册赠送积分活动 656517