A Unified Accelerator for All-in-One Image Restoration Based on Prompt Degradation Learning

降级(电信) 图像复原 计算机科学 图像(数学) 人工智能 电子工程 图像处理 工程类 电信
作者
Siyu Zhang,Qiwei Dong,Wendong Mao,Zhongfeng Wang
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tcsi.2024.3519532
摘要

All-in-one image restoration (IR) recovers images from various unknown distortions by a single model, such as rain, haze, and blur. Transformer-based IR methods have significantly improved the visual effects of the restored images. However, deploying complex IR models on edge devices is challenging due to massive parameters and intensive computations. Moreover, existing accelerators are typically customized for a single task, resulting in severe resource underutilization when executing multiple tasks. Therefore, this paper develops an algorithm-hardware co-design framework to accelerate a novel CNN-Transformer cooperative model for multiple IR tasks. Firstly, on the algorithm level, an Efficient Restoration Foundational Model (ERFM) is proposed to recover corrupted images from various degradations with low model complexity. Secondly, to guide adaptive corruption removal, a novel prompt learning scheme is introduced to fuse context-related degradation cues and boost high-quality reconstruction. Thirdly, on the hardware level, an integer approximation method is proposed to avoid expensive hardware overhead caused by complex nonlinear operations, such as layer normalization and softmax while maintaining comparable IR quality. Moreover, a head stationary dataflow and softmax fusion mechanism are designed to reduce data movement and enhance on-chip resource utilization. Finally, an overall hardware architecture is developed and implemented in TSMC 28 nm CMOS technology. Experimental results show that our ERFM achieves better visual perception than other baselines on seven challenging IR tasks without task-specific fine-tuning. Moreover, compared to other accelerators for vision Transformers, our design can achieve 3.3 $\times$ and 3.7 $\times$ improvements in throughput and energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzx发布了新的文献求助20
1秒前
2秒前
萌兰134发布了新的文献求助10
2秒前
千跃应助ZWZ采纳,获得10
3秒前
精明问筠完成签到 ,获得积分10
3秒前
YXH发布了新的文献求助10
3秒前
Arthas发布了新的文献求助10
4秒前
5秒前
7秒前
score17完成签到,获得积分10
7秒前
科研通AI2S应助愉快的芒果采纳,获得10
7秒前
7秒前
8秒前
9秒前
9秒前
9秒前
zjh关闭了zjh文献求助
10秒前
栀雨味发布了新的文献求助10
10秒前
Gauze发布了新的文献求助10
10秒前
puzhongjiMiQ发布了新的文献求助10
10秒前
puzhongjiMiQ发布了新的文献求助10
11秒前
Ava应助菜菜采纳,获得10
12秒前
12秒前
上官若男应助杰杰子采纳,获得80
12秒前
NMZN发布了新的文献求助10
13秒前
nan应助快乐的小天鹅采纳,获得10
13秒前
Jackson发布了新的文献求助10
13秒前
潘趣酒发布了新的文献求助10
14秒前
15秒前
执玉笛完成签到,获得积分10
15秒前
香蕉觅云应助沉静沛芹采纳,获得10
16秒前
psyheng发布了新的文献求助10
16秒前
16秒前
zbhshihr完成签到 ,获得积分10
16秒前
萌兰134完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
man驳回了yjf应助
19秒前
高兴的小完成签到,获得积分10
19秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105