材料科学
压电
锆钛酸铅
天线(收音机)
陶瓷
小型化
光电子学
电介质
铅(地质)
复合材料
铁电性
纳米技术
电信
计算机科学
地貌学
地质学
作者
Ling Li,Xiangjie Chen,T.C. Lei,Xiang Li,Jinglei Li,Fei Li,Yaojin Wang
摘要
Abstract Lead zirconate titanate (PZT)‐based piezoelectric ceramics are crucial components in high‐power magnetoelectric (ME) antenna devices, contributing to the miniaturization of very low frequency (VLF) communication systems. The piezoelectric coefficient ( d 33 ) and mechanical quality factor ( Q m ) determine the quality of the radiation performance of the antenna device and, therefore, play a pivotal role in antenna preparation and selection. However, achieving high values for both d 33 and Q m simultaneously proves challenging, as these properties often tend to compete with each other. Herein, we address this challenge by introducing MnCO 3 ‐modified lead magnesium niobate (PMN)‐PZT piezoelectric ceramics, leveraging elements doping to achieve a well‐balanced performance, where the d 33 was optimized to 530 pC/N, while concurrently attaining a Q m of 624, being attributed to the synergistic contributions from the defect dipole and lead vacancies. Notably, the PMN‐PZT‐based antenna device exhibits a significantly enhanced converse ME coefficient α CME = 0.138 Oe·cm/V, which improves the antenna emission performance by about 25% compared to commercial PZT‐4 samples. These findings offer a promising theoretical foundation and a feasible technical pathway for the development and design of ME antennas in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI