Choice Overload and the Long Tail: Consideration Sets and Purchases in Online Platforms

业务 信息过载 产业组织 营销 计算机科学 经济 微观经济学 运营管理 万维网
作者
Diego Aparicio,Drazen Prelec,Weiming Zhu
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:27 (2): 496-515 被引量:3
标识
DOI:10.1287/msom.2021.0318
摘要

Problem definition: This paper examines frictions in the shopping funnel using empirical clickstream data from an online travel platform. We analyze (a) customers’ heterogeneous search and purchase behaviors and (b) their reactions to changes in assortment size. We then develop a consider-then-choose model to generalize our findings. Methodology/results: We characterize the online customer journey as a two-stage consider-then-choose framework. In the consider stage, we analyze the consideration set formation and show that heterogeneity—familiarity with the assortment—amplifies the number of options; in the purchase stage, it drives preferences for niche versus popular choices. A real-world high-stakes field experiment reveals that shrinking the menu produces mixed results: highlighting the market for the long-tail for some customers and reflecting choice overload for others. Finally, we build a psychologically rich consider-then-choose model with (a) heterogeneous preferences for product features and (b) heterogeneous search costs moderated by search fatigue, theoretically characterizing the impact on consideration sets and conversion rates. Managerial implications: Identifying frictions in the shopping funnel is critical for online platforms, especially when pain points hurt click-through or conversion rates. Which options matter to which users? What is the right assortment size? Although online platforms can offer virtually unlimited assortments, managers may assume frictionless environments—which is not always the case. Our findings offer insights into improving the customer journey by considering heterogeneous preferences and boundedly rational heuristics. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2021.0318 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
h'c'z完成签到,获得积分10
1秒前
隐形曼青应助陈成采纳,获得10
1秒前
1秒前
2秒前
2秒前
明理觅儿完成签到,获得积分10
2秒前
北栀完成签到,获得积分20
3秒前
xiao完成签到,获得积分10
3秒前
xdm完成签到,获得积分10
3秒前
静jj完成签到,获得积分10
3秒前
4秒前
八百标兵完成签到,获得积分10
4秒前
汉堡包应助复杂怜容采纳,获得10
5秒前
curry举报yuannju求助涉嫌违规
5秒前
薛定谔的猫完成签到,获得积分10
5秒前
zhang005on发布了新的文献求助10
6秒前
Hanoi347发布了新的文献求助10
6秒前
6秒前
gqp完成签到,获得积分0
7秒前
Wang完成签到,获得积分10
7秒前
淡淡智宸完成签到,获得积分10
7秒前
八九完成签到,获得积分10
7秒前
HAL9000完成签到,获得积分10
7秒前
丘比特应助行云流水采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
liu完成签到 ,获得积分10
8秒前
9秒前
chaochao1234完成签到,获得积分20
9秒前
CipherSage应助眼睛大的从雪采纳,获得10
9秒前
9秒前
笑点低的芷巧完成签到,获得积分10
10秒前
bkagyin应助Hua采纳,获得10
10秒前
10秒前
淡淡智宸发布了新的文献求助10
11秒前
情怀应助幸福的聋五采纳,获得10
11秒前
12秒前
干净冰露完成签到,获得积分10
12秒前
13秒前
chaos完成签到 ,获得积分10
14秒前
zzer完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027