Imaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders

人工智能 计算机科学 可解释性 机器学习 模态(人机交互) 深度学习 卷积神经网络 模式 瓶颈 模式识别(心理学) 社会科学 社会学 嵌入式系统
作者
Md Abdur Rahaman,Yash Garg,Armin Iraji,Zening Fu,Peter Kochunov,L. Elliot Hong,Theo G.M. van Erp,Adrian Preda,Jiayu Chen,Vince D. Calhoun
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (17)
标识
DOI:10.1002/hbm.26799
摘要

Abstract Multimodal learning has emerged as a powerful technique that leverages diverse data sources to enhance learning and decision‐making processes. Adapting this approach to analyzing data collected from different biological domains is intuitive, especially for studying neuropsychiatric disorders. A complex neuropsychiatric disorder like schizophrenia (SZ) can affect multiple aspects of the brain and biologies. These biological sources each present distinct yet correlated expressions of subjects' underlying physiological processes. Joint learning from these data sources can improve our understanding of the disorder. However, combining these biological sources is challenging for several reasons: (i) observations are domain specific, leading to data being represented in dissimilar subspaces, and (ii) fused data are often noisy and high‐dimensional, making it challenging to identify relevant information. To address these challenges, we propose a multimodal artificial intelligence model with a novel fusion module inspired by a bottleneck attention module. We use deep neural networks to learn latent space representations of the input streams. Next, we introduce a two‐dimensional (spatio‐modality) attention module to regulate the intermediate fusion for SZ classification. We implement spatial attention via a dilated convolutional neural network that creates large receptive fields for extracting significant contextual patterns. The resulting joint learning framework maximizes complementarity allowing us to explore the correspondence among the modalities. We test our model on a multimodal imaging‐genetic dataset and achieve an SZ prediction accuracy of 94.10% ( p < .0001), outperforming state‐of‐the‐art unimodal and multimodal models for the task. Moreover, the model provides inherent interpretability that helps identify concepts significant for the neural network's decision and explains the underlying physiopathology of the disorder. Results also show that functional connectivity among subcortical, sensorimotor, and cognitive control domains plays an important role in characterizing SZ. Analysis of the spatio‐modality attention scores suggests that structural components like the supplementary motor area, caudate, and insula play a significant role in SZ. Biclustering the attention scores discover a multimodal cluster that includes genes CSMD1, ATK3, MOB4, and HSPE1, all of which have been identified as relevant to SZ. In summary, feature attribution appears to be especially useful for probing the transient and confined but decisive patterns of complex disorders, and it shows promise for extensive applicability in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
lip发布了新的文献求助10
1秒前
丢丢忘忘发布了新的文献求助10
1秒前
小闹应助wwww采纳,获得50
1秒前
1秒前
1秒前
大模型应助自然听兰采纳,获得10
2秒前
maybe驳回了Jasper应助
3秒前
4秒前
生动成危完成签到,获得积分20
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
ddd完成签到,获得积分20
6秒前
元气满满完成签到,获得积分20
6秒前
6秒前
wkjfh举报西红柿呀求助涉嫌违规
7秒前
7秒前
8秒前
从容道罡完成签到,获得积分10
8秒前
azntyrvt发布了新的文献求助10
8秒前
在水一方应助南风采纳,获得10
9秒前
忧心的棉花糖完成签到,获得积分10
10秒前
10秒前
仁爱糖豆发布了新的文献求助10
10秒前
10秒前
紫色哀伤发布了新的文献求助10
10秒前
善学以致用应助Yunni采纳,获得10
11秒前
11秒前
hb发布了新的文献求助10
12秒前
JOBZ完成签到,获得积分10
12秒前
南冥完成签到 ,获得积分10
13秒前
科研通AI6应助大大小小采纳,获得10
14秒前
14秒前
15秒前
15秒前
kolento发布了新的文献求助10
15秒前
科研小白发布了新的文献求助10
16秒前
生动成危发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653193
求助须知:如何正确求助?哪些是违规求助? 4789427
关于积分的说明 15063229
捐赠科研通 4811788
什么是DOI,文献DOI怎么找? 2574069
邀请新用户注册赠送积分活动 1529802
关于科研通互助平台的介绍 1488465