清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Imaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders

人工智能 计算机科学 可解释性 机器学习 模态(人机交互) 深度学习 卷积神经网络 模式 瓶颈 模式识别(心理学) 社会科学 社会学 嵌入式系统
作者
Md Abdur Rahaman,Yash Garg,Armin Iraji,Zening Fu,Peter Kochunov,L. Elliot Hong,Theo G.M. van Erp,Adrian Preda,Jiayu Chen,Vince D. Calhoun
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (17)
标识
DOI:10.1002/hbm.26799
摘要

Abstract Multimodal learning has emerged as a powerful technique that leverages diverse data sources to enhance learning and decision‐making processes. Adapting this approach to analyzing data collected from different biological domains is intuitive, especially for studying neuropsychiatric disorders. A complex neuropsychiatric disorder like schizophrenia (SZ) can affect multiple aspects of the brain and biologies. These biological sources each present distinct yet correlated expressions of subjects' underlying physiological processes. Joint learning from these data sources can improve our understanding of the disorder. However, combining these biological sources is challenging for several reasons: (i) observations are domain specific, leading to data being represented in dissimilar subspaces, and (ii) fused data are often noisy and high‐dimensional, making it challenging to identify relevant information. To address these challenges, we propose a multimodal artificial intelligence model with a novel fusion module inspired by a bottleneck attention module. We use deep neural networks to learn latent space representations of the input streams. Next, we introduce a two‐dimensional (spatio‐modality) attention module to regulate the intermediate fusion for SZ classification. We implement spatial attention via a dilated convolutional neural network that creates large receptive fields for extracting significant contextual patterns. The resulting joint learning framework maximizes complementarity allowing us to explore the correspondence among the modalities. We test our model on a multimodal imaging‐genetic dataset and achieve an SZ prediction accuracy of 94.10% ( p < .0001), outperforming state‐of‐the‐art unimodal and multimodal models for the task. Moreover, the model provides inherent interpretability that helps identify concepts significant for the neural network's decision and explains the underlying physiopathology of the disorder. Results also show that functional connectivity among subcortical, sensorimotor, and cognitive control domains plays an important role in characterizing SZ. Analysis of the spatio‐modality attention scores suggests that structural components like the supplementary motor area, caudate, and insula play a significant role in SZ. Biclustering the attention scores discover a multimodal cluster that includes genes CSMD1, ATK3, MOB4, and HSPE1, all of which have been identified as relevant to SZ. In summary, feature attribution appears to be especially useful for probing the transient and confined but decisive patterns of complex disorders, and it shows promise for extensive applicability in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大侠完成签到 ,获得积分10
42秒前
JamesPei应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
wood完成签到,获得积分10
1分钟前
CadoreK完成签到 ,获得积分10
1分钟前
管靖易完成签到 ,获得积分10
1分钟前
阿里完成签到,获得积分10
1分钟前
冷傲的擎汉完成签到 ,获得积分10
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
uppercrusteve完成签到,获得积分10
1分钟前
青雾雨完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
炳灿完成签到 ,获得积分10
2分钟前
DHW1703701完成签到,获得积分10
2分钟前
荔枝励志完成签到 ,获得积分10
2分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
闲人颦儿完成签到,获得积分0
2分钟前
ceeray23发布了新的文献求助20
2分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
飞云完成签到 ,获得积分10
3分钟前
眯眯眼的安雁完成签到 ,获得积分10
3分钟前
似水流年完成签到 ,获得积分10
3分钟前
hzauhzau完成签到 ,获得积分10
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
william完成签到,获得积分10
5分钟前
红茸茸羊完成签到 ,获得积分10
5分钟前
休斯顿完成签到,获得积分10
5分钟前
friend516完成签到 ,获得积分10
5分钟前
氕氘氚完成签到 ,获得积分10
5分钟前
tiantian完成签到 ,获得积分10
5分钟前
千空完成签到 ,获得积分10
6分钟前
黑猫老师完成签到 ,获得积分10
6分钟前
彩色的芷容完成签到 ,获得积分10
6分钟前
6分钟前
ceeray23发布了新的文献求助20
6分钟前
JamesPei应助waxxi采纳,获得10
6分钟前
长毛象完成签到 ,获得积分10
6分钟前
香蕉觅云应助科研通管家采纳,获得10
6分钟前
ywzwszl完成签到,获得积分0
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614846
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551