Imaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders

人工智能 计算机科学 可解释性 机器学习 模态(人机交互) 深度学习 卷积神经网络 模式 瓶颈 模式识别(心理学) 社会科学 社会学 嵌入式系统
作者
Md Abdur Rahaman,Yash Garg,Armin Iraji,Zening Fu,Peter Kochunov,L. Elliot Hong,Theo G.M. van Erp,Adrian Preda,Jiayu Chen,Vince D. Calhoun
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (17)
标识
DOI:10.1002/hbm.26799
摘要

Abstract Multimodal learning has emerged as a powerful technique that leverages diverse data sources to enhance learning and decision‐making processes. Adapting this approach to analyzing data collected from different biological domains is intuitive, especially for studying neuropsychiatric disorders. A complex neuropsychiatric disorder like schizophrenia (SZ) can affect multiple aspects of the brain and biologies. These biological sources each present distinct yet correlated expressions of subjects' underlying physiological processes. Joint learning from these data sources can improve our understanding of the disorder. However, combining these biological sources is challenging for several reasons: (i) observations are domain specific, leading to data being represented in dissimilar subspaces, and (ii) fused data are often noisy and high‐dimensional, making it challenging to identify relevant information. To address these challenges, we propose a multimodal artificial intelligence model with a novel fusion module inspired by a bottleneck attention module. We use deep neural networks to learn latent space representations of the input streams. Next, we introduce a two‐dimensional (spatio‐modality) attention module to regulate the intermediate fusion for SZ classification. We implement spatial attention via a dilated convolutional neural network that creates large receptive fields for extracting significant contextual patterns. The resulting joint learning framework maximizes complementarity allowing us to explore the correspondence among the modalities. We test our model on a multimodal imaging‐genetic dataset and achieve an SZ prediction accuracy of 94.10% ( p < .0001), outperforming state‐of‐the‐art unimodal and multimodal models for the task. Moreover, the model provides inherent interpretability that helps identify concepts significant for the neural network's decision and explains the underlying physiopathology of the disorder. Results also show that functional connectivity among subcortical, sensorimotor, and cognitive control domains plays an important role in characterizing SZ. Analysis of the spatio‐modality attention scores suggests that structural components like the supplementary motor area, caudate, and insula play a significant role in SZ. Biclustering the attention scores discover a multimodal cluster that includes genes CSMD1, ATK3, MOB4, and HSPE1, all of which have been identified as relevant to SZ. In summary, feature attribution appears to be especially useful for probing the transient and confined but decisive patterns of complex disorders, and it shows promise for extensive applicability in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkkkkkc发布了新的文献求助30
刚刚
领导范儿应助只喝白开水采纳,获得10
1秒前
风中的凡阳完成签到,获得积分20
1秒前
Qq发布了新的文献求助10
1秒前
芊芊完成签到 ,获得积分10
1秒前
小二郎应助wr采纳,获得10
2秒前
小二郎应助六根清净采纳,获得10
2秒前
2秒前
顾矜应助小叶不吃香菜采纳,获得10
2秒前
酷波er应助兽行灵者采纳,获得10
2秒前
懵懂的怜翠完成签到 ,获得积分10
2秒前
3秒前
sfsgsvv发布了新的文献求助10
3秒前
cruise发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
花汐发布了新的文献求助10
4秒前
无花果应助火火采纳,获得10
4秒前
gloval发布了新的文献求助20
4秒前
5秒前
欢呼靳完成签到 ,获得积分10
5秒前
领导范儿应助清脆的半蕾采纳,获得10
5秒前
慕青应助kkkkkkc采纳,获得10
5秒前
留胡子的花卷完成签到,获得积分20
6秒前
6秒前
菠萝包发布了新的文献求助10
7秒前
7秒前
坚定的小兔子完成签到,获得积分10
7秒前
ZetianYang完成签到,获得积分10
7秒前
念头完成签到 ,获得积分10
8秒前
SciGPT应助幸福台灯采纳,获得10
8秒前
思源应助123采纳,获得10
8秒前
qny完成签到 ,获得积分10
9秒前
9秒前
钱多多完成签到 ,获得积分10
9秒前
9秒前
qimiao发布了新的文献求助10
9秒前
学术垃圾发布了新的文献求助10
10秒前
无极微光应助周大悦采纳,获得20
10秒前
10秒前
赵润泽完成签到 ,获得积分10
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443078
求助须知:如何正确求助?哪些是违规求助? 4553025
关于积分的说明 14240439
捐赠科研通 4474583
什么是DOI,文献DOI怎么找? 2452036
邀请新用户注册赠送积分活动 1442988
关于科研通互助平台的介绍 1418689