Imaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders

人工智能 计算机科学 可解释性 机器学习 模态(人机交互) 深度学习 卷积神经网络 模式 瓶颈 模式识别(心理学) 社会科学 社会学 嵌入式系统
作者
Md Abdur Rahaman,Yash Garg,Armin Iraji,Zening Fu,Peter Kochunov,L. Elliot Hong,Theo G.M. van Erp,Adrian Preda,Jiayu Chen,Vince D. Calhoun
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (17)
标识
DOI:10.1002/hbm.26799
摘要

Abstract Multimodal learning has emerged as a powerful technique that leverages diverse data sources to enhance learning and decision‐making processes. Adapting this approach to analyzing data collected from different biological domains is intuitive, especially for studying neuropsychiatric disorders. A complex neuropsychiatric disorder like schizophrenia (SZ) can affect multiple aspects of the brain and biologies. These biological sources each present distinct yet correlated expressions of subjects' underlying physiological processes. Joint learning from these data sources can improve our understanding of the disorder. However, combining these biological sources is challenging for several reasons: (i) observations are domain specific, leading to data being represented in dissimilar subspaces, and (ii) fused data are often noisy and high‐dimensional, making it challenging to identify relevant information. To address these challenges, we propose a multimodal artificial intelligence model with a novel fusion module inspired by a bottleneck attention module. We use deep neural networks to learn latent space representations of the input streams. Next, we introduce a two‐dimensional (spatio‐modality) attention module to regulate the intermediate fusion for SZ classification. We implement spatial attention via a dilated convolutional neural network that creates large receptive fields for extracting significant contextual patterns. The resulting joint learning framework maximizes complementarity allowing us to explore the correspondence among the modalities. We test our model on a multimodal imaging‐genetic dataset and achieve an SZ prediction accuracy of 94.10% ( p < .0001), outperforming state‐of‐the‐art unimodal and multimodal models for the task. Moreover, the model provides inherent interpretability that helps identify concepts significant for the neural network's decision and explains the underlying physiopathology of the disorder. Results also show that functional connectivity among subcortical, sensorimotor, and cognitive control domains plays an important role in characterizing SZ. Analysis of the spatio‐modality attention scores suggests that structural components like the supplementary motor area, caudate, and insula play a significant role in SZ. Biclustering the attention scores discover a multimodal cluster that includes genes CSMD1, ATK3, MOB4, and HSPE1, all of which have been identified as relevant to SZ. In summary, feature attribution appears to be especially useful for probing the transient and confined but decisive patterns of complex disorders, and it shows promise for extensive applicability in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助元谷雪采纳,获得10
刚刚
最好发布了新的文献求助10
1秒前
顾矜应助a.........采纳,获得10
1秒前
朴素黑猫发布了新的文献求助10
2秒前
易中华完成签到,获得积分10
2秒前
李冬卿完成签到,获得积分10
2秒前
3秒前
3秒前
Hello应助wan采纳,获得10
3秒前
瑾蘆完成签到 ,获得积分10
4秒前
大力帽子应助CHEN采纳,获得10
4秒前
qiii发布了新的文献求助10
4秒前
大个应助smz采纳,获得10
4秒前
sbf发布了新的文献求助10
5秒前
卓卓卓卓关注了科研通微信公众号
5秒前
芝士椰果发布了新的文献求助30
6秒前
wrlwrl完成签到,获得积分10
6秒前
Fermion发布了新的文献求助10
6秒前
hearz完成签到,获得积分10
7秒前
小马甲应助小糊涂采纳,获得10
7秒前
feng完成签到 ,获得积分10
7秒前
霍笑白完成签到,获得积分10
7秒前
衡珩蘅完成签到,获得积分20
8秒前
10秒前
FashionBoy应助sbf采纳,获得10
10秒前
完美世界应助evelyn采纳,获得10
10秒前
鱼鱼色发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
搜集达人应助HH采纳,获得10
11秒前
12秒前
搜集达人应助lmr采纳,获得10
12秒前
完美世界应助罗柠七采纳,获得20
13秒前
阿强完成签到,获得积分10
13秒前
衡珩蘅发布了新的文献求助30
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
嘞是举仔应助hanyuchao采纳,获得50
15秒前
up关闭了up文献求助
15秒前
结实黑猫发布了新的文献求助10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233