Imaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders

人工智能 计算机科学 可解释性 机器学习 模态(人机交互) 深度学习 卷积神经网络 模式 瓶颈 模式识别(心理学) 社会科学 社会学 嵌入式系统
作者
Md Abdur Rahaman,Yash Garg,Armin Iraji,Zening Fu,Peter Kochunov,L. Elliot Hong,Theo G.M. van Erp,Adrian Preda,Jiayu Chen,Vince D. Calhoun
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (17)
标识
DOI:10.1002/hbm.26799
摘要

Abstract Multimodal learning has emerged as a powerful technique that leverages diverse data sources to enhance learning and decision‐making processes. Adapting this approach to analyzing data collected from different biological domains is intuitive, especially for studying neuropsychiatric disorders. A complex neuropsychiatric disorder like schizophrenia (SZ) can affect multiple aspects of the brain and biologies. These biological sources each present distinct yet correlated expressions of subjects' underlying physiological processes. Joint learning from these data sources can improve our understanding of the disorder. However, combining these biological sources is challenging for several reasons: (i) observations are domain specific, leading to data being represented in dissimilar subspaces, and (ii) fused data are often noisy and high‐dimensional, making it challenging to identify relevant information. To address these challenges, we propose a multimodal artificial intelligence model with a novel fusion module inspired by a bottleneck attention module. We use deep neural networks to learn latent space representations of the input streams. Next, we introduce a two‐dimensional (spatio‐modality) attention module to regulate the intermediate fusion for SZ classification. We implement spatial attention via a dilated convolutional neural network that creates large receptive fields for extracting significant contextual patterns. The resulting joint learning framework maximizes complementarity allowing us to explore the correspondence among the modalities. We test our model on a multimodal imaging‐genetic dataset and achieve an SZ prediction accuracy of 94.10% ( p < .0001), outperforming state‐of‐the‐art unimodal and multimodal models for the task. Moreover, the model provides inherent interpretability that helps identify concepts significant for the neural network's decision and explains the underlying physiopathology of the disorder. Results also show that functional connectivity among subcortical, sensorimotor, and cognitive control domains plays an important role in characterizing SZ. Analysis of the spatio‐modality attention scores suggests that structural components like the supplementary motor area, caudate, and insula play a significant role in SZ. Biclustering the attention scores discover a multimodal cluster that includes genes CSMD1, ATK3, MOB4, and HSPE1, all of which have been identified as relevant to SZ. In summary, feature attribution appears to be especially useful for probing the transient and confined but decisive patterns of complex disorders, and it shows promise for extensive applicability in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
无花果应助galioo3000采纳,获得10
刚刚
行毅文完成签到,获得积分10
刚刚
赘婿应助ww采纳,获得10
1秒前
科研小秦完成签到,获得积分10
1秒前
1秒前
万能图书馆应助徐沛采纳,获得10
1秒前
幽默的雁露完成签到,获得积分10
1秒前
1秒前
Azyyyy完成签到,获得积分10
2秒前
慢慢发布了新的文献求助10
2秒前
阿部完成签到,获得积分20
2秒前
北陆小猫完成签到,获得积分10
2秒前
2秒前
LY发布了新的文献求助10
2秒前
方意完成签到,获得积分20
2秒前
cyj发布了新的文献求助10
2秒前
西柚西柚发布了新的文献求助10
3秒前
国家栋梁发布了新的文献求助10
4秒前
所所应助聂志鹏采纳,获得10
4秒前
背后白梦完成签到,获得积分10
5秒前
我到了啊完成签到,获得积分10
5秒前
自然的枫叶应助孔雀翎采纳,获得10
5秒前
wanci应助好名字采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
syx发布了新的文献求助10
6秒前
Jasper应助Jordon采纳,获得10
6秒前
阿部发布了新的文献求助50
6秒前
Bellis完成签到 ,获得积分10
6秒前
6秒前
Owen应助昵称11采纳,获得10
7秒前
7秒前
zyp1229发布了新的文献求助10
7秒前
方意发布了新的文献求助10
7秒前
星辰完成签到,获得积分10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285