已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Imaging‐genomic spatial‐modality attentive fusion for studying neuropsychiatric disorders

人工智能 计算机科学 可解释性 机器学习 模态(人机交互) 深度学习 卷积神经网络 模式 瓶颈 模式识别(心理学) 社会科学 社会学 嵌入式系统
作者
Md Abdur Rahaman,Yash Garg,Armin Iraji,Zening Fu,Peter Kochunov,L. Elliot Hong,Theo G.M. van Erp,Adrian Preda,Jiayu Chen,Vince D. Calhoun
出处
期刊:Human Brain Mapping [Wiley]
卷期号:45 (17)
标识
DOI:10.1002/hbm.26799
摘要

Abstract Multimodal learning has emerged as a powerful technique that leverages diverse data sources to enhance learning and decision‐making processes. Adapting this approach to analyzing data collected from different biological domains is intuitive, especially for studying neuropsychiatric disorders. A complex neuropsychiatric disorder like schizophrenia (SZ) can affect multiple aspects of the brain and biologies. These biological sources each present distinct yet correlated expressions of subjects' underlying physiological processes. Joint learning from these data sources can improve our understanding of the disorder. However, combining these biological sources is challenging for several reasons: (i) observations are domain specific, leading to data being represented in dissimilar subspaces, and (ii) fused data are often noisy and high‐dimensional, making it challenging to identify relevant information. To address these challenges, we propose a multimodal artificial intelligence model with a novel fusion module inspired by a bottleneck attention module. We use deep neural networks to learn latent space representations of the input streams. Next, we introduce a two‐dimensional (spatio‐modality) attention module to regulate the intermediate fusion for SZ classification. We implement spatial attention via a dilated convolutional neural network that creates large receptive fields for extracting significant contextual patterns. The resulting joint learning framework maximizes complementarity allowing us to explore the correspondence among the modalities. We test our model on a multimodal imaging‐genetic dataset and achieve an SZ prediction accuracy of 94.10% ( p < .0001), outperforming state‐of‐the‐art unimodal and multimodal models for the task. Moreover, the model provides inherent interpretability that helps identify concepts significant for the neural network's decision and explains the underlying physiopathology of the disorder. Results also show that functional connectivity among subcortical, sensorimotor, and cognitive control domains plays an important role in characterizing SZ. Analysis of the spatio‐modality attention scores suggests that structural components like the supplementary motor area, caudate, and insula play a significant role in SZ. Biclustering the attention scores discover a multimodal cluster that includes genes CSMD1, ATK3, MOB4, and HSPE1, all of which have been identified as relevant to SZ. In summary, feature attribution appears to be especially useful for probing the transient and confined but decisive patterns of complex disorders, and it shows promise for extensive applicability in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫于林完成签到 ,获得积分10
1秒前
xiao-lei应助mirror采纳,获得20
3秒前
Drhhhfff完成签到,获得积分10
3秒前
ormita完成签到,获得积分20
6秒前
9秒前
大模型应助章传奇采纳,获得10
11秒前
科研通AI6应助ormita采纳,获得30
11秒前
张博发布了新的文献求助10
12秒前
SunJia发布了新的文献求助10
14秒前
光之战士完成签到 ,获得积分10
14秒前
赘婿应助卢振宇采纳,获得30
15秒前
波霎完成签到,获得积分10
15秒前
16秒前
跳跃毒娘发布了新的文献求助10
16秒前
蒋22完成签到 ,获得积分10
16秒前
Ava应助Doctor采纳,获得10
20秒前
小张完成签到 ,获得积分10
22秒前
lijunliang完成签到,获得积分10
26秒前
wpz完成签到,获得积分10
26秒前
29秒前
今后应助阿米尔盼盼采纳,获得10
30秒前
雨之夏日发布了新的文献求助20
33秒前
专注的从筠完成签到,获得积分10
36秒前
鱼鱼完成签到 ,获得积分10
36秒前
meng完成签到,获得积分10
38秒前
有趣的银完成签到,获得积分10
44秒前
SciGPT应助温暖采纳,获得10
46秒前
51秒前
Chris完成签到 ,获得积分0
51秒前
52秒前
豪宝好饱完成签到 ,获得积分10
53秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
浮游应助科研通管家采纳,获得10
56秒前
JamesPei应助科研通管家采纳,获得10
56秒前
大模型应助科研通管家采纳,获得10
56秒前
56秒前
冷艳铁身完成签到 ,获得积分10
57秒前
57秒前
Maryam发布了新的文献求助20
58秒前
xiaoming发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952219
求助须知:如何正确求助?哪些是违规求助? 4214998
关于积分的说明 13110561
捐赠科研通 3996730
什么是DOI,文献DOI怎么找? 2187652
邀请新用户注册赠送积分活动 1202932
关于科研通互助平台的介绍 1115710