The brain is immensely complex, with diverse components and dynamic interactions building upon one another to orchestrate a wide range of functions and behaviors. Understanding patterns of these complex interactions and how they are coordinated to support collective neural activity and function is critical for parsing human and animal behavior, treating mental illness, and developing artificial intelligence. Rapid experimental advances in imaging, recording, and perturbing neural systems across various species now provide opportunities and challenges to distill underlying principles of brain organization and function. Here, we take stock of recent progresses and review methods used in the statistical analysis of brain networks, drawing from fields of statistical physics, network theory and information theory. Our discussion is organized by scale, starting with models of individual neurons and extending to large-scale networks mapped across brain regions. We then examine the organizing principles and constraints that shape the biological structure and function of neural circuits. Finally, we describe current opportunities aimed at improving models in light of recent developments and at bridging across scales to contribute to a better understanding of brain networks.