作者
Akira Kawata,Yuta Kaneda,Daisuke Matsunaga,Hikaru Nakagawa,Fumiharu Togo,Mikinobu Yasumatsu,Takayuki Ishiwata
摘要
Aberrant light/dark (LD) cycles are prevalent in modern society due to electric light usage, leading to mood disorders from circadian disruption or misalignment. However, research on the physiological and behavioral effects of LD variations on brain neurotransmitters is limited. We investigated the effects of extreme LD cycles on body weight (BW), core body temperature (Tcore), locomotor activity (ACT), emotional behaviors, and monoamine levels (noradrenaline [NA], dopamine [DA], and serotonin [5-HT]) in male Wistar rats that were exposed to 1 month of either long light phase (20 L:4D), long dark phase (4 L:20D), or normal (12 L:12D) LD cycles. The 20 L:4D rats exhibited blunted rhythms, with decreased amplitude and advanced/delayed acrophase in Tcore and ACT, alongside increased BW. The 4 L:20D rats showed circadian misalignment, with increased/decreased amplitude in Tcore or ACT and delayed acrophase in Tcore and ACT, also gaining BW. In the 20 L:4D group, NA and 5-HT levels decreased in the suprachiasmatic nucleus and amygdala, respectively, while the 4 L:20D group had increased DA and 5-HT levels in the caudate putamen and dorsomedial hypothalamus, respectively. Open field and social interaction tests indicated anxiety-like behaviors in both test groups. Overall, each extreme LD cycle affected Tcore, ACT amplitude, acrophase, and monoamine levels differently, inducing anxiogenic responses.