亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Plasma proteomic profiles predict individual future osteoarthritis risk.

骨关节炎 医学 计算生物学 生物 病理 替代医学
作者
Zijian Kang,J L Zhang,Wenxin Liu,Chen Zhu,Ying Zhu,Ping Li,Kai Li,Qiang Tong,Sheng‐Ming Dai
出处
期刊:PubMed
标识
DOI:10.1002/art.43143
摘要

Osteoarthritis (OA) is a widespread degenerative joint disease that causes a considerable socioeconomic burden. Despite progress in genetic and environmental insights, early diagnosis is still limited by the lack of evident symptoms during the initial phases and accurate biomarkers. This study aims to identify plasma proteins associated with future risk of OA and develop a predictive model. We conducted a large-scale proteomic analysis of 45,307 participants from the UK Biobank, excluding those with baseline OA. Plasma samples were assayed using the Olink Explore Proximity Extension Assay targeting 1,463 unique proteins. Clinical variables and OA outcomes were extracted and linked to electronic health records. A predictive model was constructed using the LightGBM machine learning method, and the SHapley Additive exPlanations (SHAP) were applied to evaluate the importance of variables. We identified a panel of proteins significantly associated with the risk of developing OA. Notably, after adjusting for multiple confounders, Collagen Type IX Alpha 1 Chain (COL9A1) and Cartilage Acidic Protein 1 (CRTAC1) were the most significant predictors of incident OA, with hazard ratios (HR) of 1.54 (95% confidence interval [CI]:1.48-1.61) and 1.65 (95% CI:1.54-1.78), respectively. SHAP analysis allowed a profound interpretation of the contribution of each protein and clinical variable to the model, revealing the multifactorial nature of OA risk prediction. The temporal trajectories of plasma proteins indicated that the levels of COL9A1 and CRTAC1 began to deviate from normal for more than a decade before OA onset, suggesting their potential use in early detection strategies. The predictive model, developed using the LightGBM algorithm, integrated proteins with clinical covariates and demonstrated an area under the curve (AUC) of 0.729 for 5-year OA prediction, 0.721 for 10-year prediction, and 0.723 for all incident OA. The predictive accuracy of the model was further enhanced for hip and knee OA, achieving AUCs of 0.820 and 0.803 for 5-year predictions. Our study identified the role of plasma proteomics in predicting future OA risk, which could contribute to preemptive measures. The innovative model, which integrates proteomic biomarkers with clinical data, offers a potential tool for risk assessment, potentially optimizing OA management strategies and enhancing prevention efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
frap完成签到,获得积分0
1秒前
azuref发布了新的文献求助10
20秒前
sarmad发布了新的文献求助10
27秒前
31秒前
azuref完成签到,获得积分20
34秒前
伍佰发布了新的文献求助10
35秒前
JamesPei应助伍佰采纳,获得10
42秒前
kmmu0611发布了新的文献求助10
47秒前
科研通AI5应助kmmu0611采纳,获得10
1分钟前
李爱国应助花痴的裘采纳,获得10
1分钟前
大个应助一只西瓜茶采纳,获得10
1分钟前
1分钟前
花痴的裘发布了新的文献求助10
1分钟前
1分钟前
完美世界应助zdz采纳,获得10
1分钟前
俭朴蜜蜂发布了新的文献求助10
1分钟前
在水一方应助执着的忻采纳,获得10
1分钟前
Qvby3完成签到 ,获得积分10
2分钟前
2分钟前
zdz发布了新的文献求助10
2分钟前
fire应助三金采纳,获得10
2分钟前
科研通AI2S应助mochi采纳,获得10
2分钟前
3分钟前
haru96完成签到 ,获得积分10
3分钟前
3分钟前
mochi发布了新的文献求助10
3分钟前
浦肯野应助mochi采纳,获得30
3分钟前
自信松思完成签到 ,获得积分10
3分钟前
3分钟前
Cristina2024完成签到,获得积分10
3分钟前
鹿鹿发布了新的文献求助150
3分钟前
脑洞疼应助0527采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
内向士萧发布了新的文献求助10
3分钟前
3分钟前
Owen应助鹿鹿采纳,获得10
3分钟前
内向士萧完成签到,获得积分10
3分钟前
0527发布了新的文献求助10
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484408
求助须知:如何正确求助?哪些是违规求助? 3073433
关于积分的说明 9130940
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517559
邀请新用户注册赠送积分活动 702147
科研通“疑难数据库(出版商)”最低求助积分说明 701156